
F O R C E G E N E R AT I O N O F A C T I N F I L A M E N T S G R O W I N G
A G A I N S T A B A R R I E R

a thesis submitted for the degree of

doctor of philosophy (science)

in physics (theoretical)

by

R A J K U M A R S A D H U

Department of Physics

University of Calcutta

2019



Dedicated to

My Parents



A C K N O W L E D G E M E N T S

I would like to thank my supervisor Dr. Sakuntala Chatterjee for her guidance, constant

support and encouragements. I would specially thank her for giving me the opportunity to

think independently that helps me a lot to understand the depth of the problems. I would

also like to thank Prof. Subhrangshu Sekhar Manna for his questions and encouragements

in group meetings, seminars and conferences.

I would also like to thank my B. Sc. teacher Prof. G. C. Jha and M. Sc. teacher Dr. Pankaj

Mishra for their way of teaching that helps me a lot in my study.

I would like to thank my group members Subrata da and Shauri for their academic and

non-academic helps and supports. I would like to thank Rakesh for his companionship and

his constant academic and non academic supports. I would also like to thank my seniors

Sayani di, Argya da, Suman da, Debmalya da, Shinde da, Kartik da, Somnath da, Krish-

nendu da, Sagar da, Biplab da, Subhajit da, Supriyo da, Nirnai da, Aslam da, my frineds

and juniors Subhadip, Sumata, Sudipta, Chandreyi, Anita, Sutapa, Debasis, Ananda, Am-

rit, Sabana, Rahul, Imadul, Sandip, Indranil, Dheeraj, Tuhin, Keshab, Anirban and Amal for

their companionship. Without them, life at S N Bose would not be so enjoyable. I would also

like to thank my all friends from P. K. Roy Memorial College, Dhanbad and Indian Institute

of Technology (Indian School of Mines), Dhanbad.

I would like to thank the social activity group of S N Bose centre and all its members,

that helps me to spend some part of my life with the people and students of the slums. I

would like to thank the organization ‘Uttarpara Prerna’ and all its members, specially Pritam

Chatterjee for giving me the opportunity to serve our society on behalf of this organization

for years. I would like to thank our singing group ‘SNB Khaja Band’ and all its members,

specially Sarowar (Goba) da for making a pleasant and enjoyable stay in S N Bose centre. I

would like to thank all the S N Bose staffs, cleaners, gardeners and cooking team for making

the environment so beautiful and comfortable for stay.

Finally I would like to thank my parents, my sisters and other family members for their

encouragement and support. Without them it would not be possible to reach upto this posi-

tion.

iii



P U B L I C AT I O N S

• Actin filaments growing against a barrier with fluctuating shape, Raj Kumar Sadhu

and Sakuntala Chatterjee, Phys. Rev. E 93, 062414 (2016).

• Actin filaments growing against an elastic membrane: Effect of membrane tension,

Raj Kumar Sadhu and Sakuntala Chatterjee, Phys. Rev. E 97, 032408 (2018).

• Actin filaments pushing against a barrier: Comparison between two force generation

mechanisms,

Raj Kumar Sadhu and Sakuntala Chatterjee, Eur. Phys. J. E (In press).

iv



C O N T E N T S

1 introduction 1

1.1 Force generation by actin filaments 1

1.2 Experimental measurements of force-velocity curves 3

1.3 Theoretical studies of force-velocity curves 4

1.4 measurement of stall force 6

1.5 Importance of membrane properties on the force generation mechanism by

actin filaments 8

1.6 Motivation and plan of the thesis 9

2 actin filaments growing against a kardar-parisi-zhang (kpz) mem-

brane 13

2.1 Introduction 13

2.2 Description of the model 14

2.3 Results for single filament 17

2.3.1 Analytical calculation of velocity due to global movement 18

2.3.2 Analytical calculation of velocity due to local fluctuations 19

2.3.3 Variation of the shape of the barrier with load 21

2.3.4 Effect of faster and slower barrier dynamics 23

2.3.5 Results for δ < d 25

2.4 Results for multiple filaments 25

2.5 Summary 28

3 actin filaments growing against an elastic membrane : gradient

model 30

3.1 Introduction 30

3.2 Description of the model 31

3.3 Results for single filament 33

3.3.1 Peak in the elasticity-velocity curve 34

3.3.2 Absence of steady state for µ < µ∗ 37

3.3.3 Faster membrane dynamics lowers µ∗ 38

3.3.4 For large µ the membrane behaves as a rigid obstacle 40

3.4 Results for multiple filaments 41

3.5 Conclusions 44

v



4 actin filaments growing against an elastic membrane : gaussian

model 46

4.1 Introduction 46

4.2 Description of the model 46

4.3 Results for single filament 47

4.3.1 Membrane velocity decreases with ν 47

4.3.2 Faster membrane dynamics yields a concave ν−V curve 49

4.4 Results for Multiple filaments 50

4.5 Conclusions 52

5 membrane with elastic and bending energy : helfrich hamiltonian

model 53

5.1 Introduction 53

5.2 Description of the model 55

5.3 Results for single filament 56

5.3.1 Non-monotonic variation in bending energy cost 56

5.3.2 Membrane velocity varies non-monotonically with σ 58

5.3.3 Faster membrane dynamics lowers σ∗ 60

5.3.4 κ −V curves are monotonic for any σ 60

5.4 Results for multiple filaments 62

5.4.1 For N � L, the qualitative behaviour remains same as the single fila-

ment 62

5.4.2 For N ∼ L, σ∗ depends explicitly upon N and L 62

5.5 Conclusions 64

6 comparison between two types of filament-barrier interactions 66

6.1 Introduction 66

6.2 Rigid barrier model 67

6.2.1 Variation of V0 with S for single filament 68

6.2.2 Force-velocity curves with different S for single filament 70

6.2.3 Stall force as a function of S for single filament 71

6.2.4 Results for multiple filaments 72

6.3 KPZ barrier model 77

6.4 Elastic barrier model 78

6.4.1 Variation of V0 with S/L 78

6.4.2 µ−V curves for different values of S/L 79

6.4.3 Variation of µ∗ with S/L 81

6.5 Conclusion 81

vi



L I S T O F F I G U R E S

Figure 1.1 Structure of Actin filament. The actin filament is formed by two protofil-

aments, which grow parallelly with each other. The actin filament is

asymmetric, where one end, called the barbed end has generally high

growth rate than the pointed end. 2

Figure 1.2 Protrusion caused by actin polymerization. Filopodium are small fin-

ger like structures, that are formed by the growth of parallel actin

filaments. Lamellipodium are another type of protrusion, which are

caused by the growth of branched actin filaments. The figure is pro-

duced from Ref. [6] with some modification. 3

Figure 1.3 Theoretical modelling of force generation by actin filaments. The actin

filaments are assumed to be rod-like elements growing in the upward

direction against a rigid wall like barrier. An external force F is acting

on the barrier in the opposite direction of the filament growth. The

filaments, which are not in contact with the barrier, grow upward

(downward) with force independent rate U0 (W0). The filament that is

in contact with the barrier grows with force dependent rate U(F). The

barrier grows upward (downward) with rate R+ (R−), which may in

general depend upon the external force. 5

Figure 2.1 Schematic representation of the KPZ barrier model. (a): Polymeriza-

tion of a bound filament by causing a local change in barrier height

with rate U0e−
βFd

L . (b): A bound filament polymerizes by causing global

movement of the whole barrier with rate U0e−βFd. (c): A free filament

polymerizes and depolymerizes with rates U0 and W0, respectively.

Since these processes do not involve any barrier motion, these rates

are independent of F. (d): Thermal fluctuation of the barrier: a local

valley can flip to a hill with rate R+ and the reverse process occurs

with rate R−. We use local detailed balance, R+/R− = exp(−βFd/L),

except at the binding sites, where hill to valley transition may be

blocked due to presence of a filament. 15
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Figure 2.2 Force-velocity characteristic and stall force for a single filament. (a):

Force-velocity curve has a convex shape. Inset shows exponential de-

cay of the barrier velocity for small and intermediate F, when the

global motion of the barrier dominates. Close to stalling the local fluc-

tuations become important. We have used L = 512 here. (b): Stall

force increases with barrier size L. In both the panels, we have used

S/L = 1. Discrete points show simulation data and continuous lines

show analytical results. Other simulation parameters are as in Table

2.1. 18

Figure 2.3 Average shape of the barrier for single filament. Discrete points show

simulation results and continuous lines show analytical prediction.

(a): Probability ρi to find an upslope bond as a function of scaled

distance i/L from the binding site. ρi = 1/2 for i = L/2 and for

larger i, we have ρi = 1 − ρi−L/2. The open symbols correspond to

F = 0 and the close symbols correspond to F = 4pN. Symbols ∗ and

◦ are for L = 128 and × and � are for L = 256. These data show

that, except close to the binding site, ρi increases linearly with i with

a gradient ∼ 1/L. We also find that ρi remains almost same for these

F values. The continuous lines are analytical predictions, where green

solid line is for F = 0 and blue dashed line is for F = 4pN. (b):

Probability pv(i) to find a valley at a distance i from the binding site.

For i = 0 the probability is substantially smaller compared to the rest

of the system, which means it is rather unlikely to find a valley at

the binding site. The symbols ∗ and ∆ represent F = 0pN and 4pN,

respectively. We have used L = 512 here. (c) and (d): [pv(i) − ph(i)]

shows a sharp jump at i = 0 and then remains constant at a value that

scales as 1/L. The open symbols correspond to F = 0 and the closed

symbols correspond to F = 4pN. Symbols ∗ and ◦ are for L = 256

and × are � are for L = 512. Other simulation parameters are as in

Table 2.1. 22

Figure 2.4 Variation of α as a function of external load. Close to the stalling force,

α shows a sharp increase. Here, we have used S/L = 1 and L = 256

(red triangle) and 128 (blue circle). Other simulation parameters are

as in Table 2.1. 23
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Figure 2.5 Contact probability p0 as a function of F for single filament. Our an-

alytical calculation yields p0 = (1−W0/U0) ' 0.5. For slow barrier

dynamics, we find reasonable agreement. But for fast barrier dynam-

ics, our analytical prediction does not remain valid any more and p0

increases with F. Here we take L=64. All other simulation parameters

are as in table 2.1. 24

Figure 2.6 Force-velocity characteristic for a single filament depends on the rela-

tive time-scale between the filament and barrier dynamics. (a): Veloc-

ity of the barrier vs scaled force for different values of S/L. For large

S/L, the convex nature of force-velocity characteristic is lost. As S/L

increases, the local fluctuations of the barrier become more important

and even for small F, the barrier velocity is not governed by the global

movement alone, and hence V does not decay exponentially anymore.

Here, we have used L = 64. (b): Stall force decreases as a function of

S/L. Since local movements of the barrier become more important

for large S/L, the balance between global and local movements is

reached at a smaller force. Note however, that the x-axis is plotted in

a log-scale, indicating a weak dependence of stall force on the time-

scale. Here we have used L = 256. Other simulation parameters are

as in Table 2.1. 24

Figure 2.7 Results for δ < d. (a): The force velocity curves are convex even for

d/δ >> 1. For small F, the points collapses with each other, as in

this regime, only the global movements play significant role and the

local fluctuations are negligible. Inset (a): The stall force increases as

(d/δ)0.6, this is because for small δ, the local fluctuations becomes less

costly and near the stalling regime, these local fluctuations maintains

the velocity of the barrier. Here we use L = 32 and S/L = 1. (b):

The shape of the force velocity curve changes as S/L changes. Inset

(b): The stall force increases as L0.2. For the inset, we use L = 64 and

d/δ = 2. Other simulation parameters are as in Table 2.1. 26

Figure 2.8 Average number of bound filaments N0 as a function of force F. For

slow barrier dynamics, our analytical prediction in Eq. 2.16 agree well

with numerics. But as the barrier dynamics becomes faster, deviations

are observed. Here we have used L = 256, N = 32. Other simulation

parameters are same as in Table 2.1. 27
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Figure 2.9 Force-velocity characteristic for multiple filaments. (a): Velocity shows

very slow decay for large F, when global movement can be neglected

and V can be assumed to be governed by local fluctuations alone.

Here, we have used L = 512 and N = 32. Inset shows stall force as

a function of N for two different L values. We find stall force scales

linearly with N and remains independent of L. The continuous lines

show analytical results. (b): Dependence of force-velocity characteris-

tic on the time-scale of barrier dynamics. In this case we find same

qualitative effect as in the single filament case. Here, we have used

N = 16 and L = 128. Other simulation parameters are as in Table

2.1. 28

Figure 3.1 Schematic representation of gradient model. The square blocks show

actin monomers, which join together to form rod-like filaments. The

thick solid line represents the shape of the elastic membrane. (a): A

bulk site of the membrane thermally fluctuates and changes its height

by an amount d, which in turn changes the membrane contour length

by 2d. The forward process increases the energy and occur with rate

R+ while the reverse process decreases the energy and happens with

rate R−. (b): A bulk site of the membrane changes its height by an

amount d but the energy remains same and thus the movement hap-

pens with rate unity. (c): A bound filament pushes the binding site by

an amount d that costs energy and occurs with rate U0R+. (d): A free

filament polymerizes (depolymerizes) with rate U0 (W0). 33

Figure 3.2 µ−V curve for a single filament. (a): The average velocity of the mem-

brane as a function of µ shows a peak at µ∗. While V ∼ 1/L, the

peak-position µ∗ does not depend on L. The solid triangle on the y-

axis marks V0 = d
L (U0 −W0), which is the expected value of V at

µ = 0. Inset: For large µ, the membrane velocity decreases exponen-

tially with a decay constant ' 0.67, which is close to the value of βd.

Here, we have used L = 64. (b): The variation of average velocity of

the binding site (Vbind) and the average velocity of a bulk site (Vbulk)

with µ, shows that Vbind decreases monotonically with µ while Vbulk

increases with µ for µ < µ∗. For µ > µ∗, these two velocities are

equal. Here we have used L = 16. For all the above plots, we have

used S/L = 1. Other simulation parameters are as in Table 2.1. 34
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Figure 3.3 The membrane contour length keeps growing for µ < µ∗ and stabi-

lizes for µ > µ∗. (a): The ratio λ = 1 for µ < µ∗ and decreases sharply

at µ∗ to its asymptotic value 2/L for large µ. Inset: The saturation

of λ at large µ happens exponentially. (b): The quantity <C(t)−C(0)>
t ,

for large t, decreases with µ and becomes zero above µ∗. Inset: Vari-

ation of contour length with time at µ∗ = 1.748pN. We see that af-

ter large enough time, C(t) grows with time as t0.5 with a diffusion

constant D = 37.41± 7.19nm2/s. The analytically calculated value of

D = 41.352nm2/s which is close to the numerical value. Here we use

L = 64. For both panels S/L = 1. Other simulation parameters are as

in Table 2.1. 37

Figure 3.4 Height gradient around the binding site. (a): The probability that z ≥
0 as a function of µ. We see that the probability is exactly one for µ <

µ∗ and even for µ > µ∗, it is very close to one. (b): Here we show the

probability that hb±1 ≥ hb±2 as a function of µ. The red triangles are

for prob(hb+1 ≥ hb+2) while the blue circles are for prob(hb−1 ≥ hb−2).

These probabilities are also close to one for entire range of µ. Here,

L = 64 and S/L = 1. Other simulation parameters are as in Table

2.1. 39

Figure 3.5 Peak position and peak height of µ− V curve depends on S/L. (a):

Scaled V as a function of µ for different S/L values. The scaling fac-

tor Vmax has been used such that the data for different S/L values

can be compared. In this plot the symbol ◦ correspond to S/L = 2−2

(Vmax ' 5.84× 10−2nm/s), the � correspond to S/L = 2−1 (Vmax '
5.84× 10−2nm/s), the4 correspond to S/L = 1 (Vmax ' 7.89× 10−2nm/s)

and the ∇ correspond to S/L = 26 (Vmax ' 2.23nm/s). For smaller

values of S/L, the curve is monotonic as the velocity is mostly deter-

mined by the binding site. As S/L increases, the µ− V curve devel-

ops a peak at µ∗. Inset: µ∗ decreases with S/L. The discrete points

from simulations match well with continuous line from Eq. (3.6). We

use L = 64 here. (b): The membrane velocity at µ∗ plotted against

S/L shows a power law increase. The solid line represents a function

∼ x0.87 and goes parallel to our numerical data points. Here we have

used L = 64. Other simulation parameters are as in Table 2.1. 40
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Figure 3.6 Variation of membrane velocity and contour length against µ for dif-

ferent values of S/L. (a): The µ − V curve changes from convex to

concave as S/L is increased. For S/L << 1, the curve is convex while

for S/L >> 1, it becomes concave. Here, we have scaled V by Vmax

such that we can compare them in the same scale. The values of Vmax

are 4.67× 10−1nm/s, 4.67× 10−1, nm/s, 3.73nm/s, and 3.73nm/s, re-

spectively, in the increasing order of S/L. Here, we have used L = 8.

(b): Average contour length of the membrane scaled by Ld as a func-

tion of µ for different values of S/L. The continuous line is from

analytical calculation in the equilibrium limit, which matches with

simulation for very high S/L. Other simulation parameters are as in

Table 2.1. 41

Figure 3.7 For µ >> 1, the membrane behaves as a rigid obstacle. (a): The con-

tact probability p0 for different values of S/L. The continuous lines

are from the analytical predictions, which are valid only for µ < µ∗

and thus compared only upto this region. For large µ, the value of

p0 saturates to 1/2, which is expected for a rigid barrier. As S/L de-

creases, the rigid barrier behavior sets in for smaller µ values. The

continuous lines show analytical calculation in µ < µ∗ regime. (b):

The variation of λ for different values of S/L. For small µ, the value

of λ is unity, which means that the contour length of the membrane

diverges with time. For high enough value of µ, λ saturates to 2/L.

We use L = 64 for both the plots. Other simulation parameters are as

in Table 2.1. 42

Figure 3.8 µ−V curve for multiple filaments with ρ� 1. (a): The velocity scales

with ρ similar to the single filament case. It also shows a peak at µ =

µ∗ which is independent of ρ. We have used S/L = 1 here. (b): Scaled

velocity as a function of µ for different time scales which show that the

curve changes from convex to concave similar to the single filament

case. For S/L << 1, the curve is convex while for S/L >> 1, the

curve becomes concave. The values of Vmax are 0.467nm/s, 3.71nm/s,

3.74nm/s and 3.75nm/s for S/L = 2−2, 25, 27, and 210, respectively.

Here we have used N = 4 and L = 32. Other simulation parameters

are as in Table 2.1. 43
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Figure 3.9 Results for multiple filaments with high filament density. In the main

plot, we show µ− V curve for multiple filaments for ρ ∼ 1. We note

that V does not scale with ρ. The peak position µ∗ decreases with ρ.

The inset shows the variation of µ∗ with ρ. We note that for ρ << 1,

the value of µ∗ remains constant and then decreases with ρ for high

value of ρ. We use S/L = 1 here. Other simulation parameters are as

in Table 2.1. 43

Figure 3.10 Inhomogeneous distribution of filaments. For the denser part of the

membrane, ρ = 1/2 while for the rarer part, ρ = 1/8. We note that for

the denser part, Vbind = Vbulk at µ = 0.5pN, while the rarer part still

moves with smaller velocity. The velocity of all the sites become equal

at µ∗ = 5.80± 0.04pN, which is much higher than the homogeneous

distribution of filaments. We use here N = 20, L = 64 and S/L = 1.

Other simulation parameters are as in Table 2.1. 44

Figure 4.1 Variation of velocity and contour length with ν for Gaussian model.

(a): The ν−V curve for single filament shows 1/L scaling. The curve

is monotonic for all ν 6= 0. Top inset: The velocity falls exponen-

tially with decay constant ' 3.13, which is close to 2βd2. Bottom

inset: In the limit of very small ν, the velocity saturates to a value

∼ 0.074nm/sec, that is distinctly different from V0 = 0.058nm/s at

ν = 0. We use L = 64 for the insets and S/L = 1 for all the plots. (b):

Average contour length of the membrane scaled by d as a function of

ν. For very high value of ν, < C > becomes equal to the system size

Ld. Top inset: Contour length decreases exponentially for large µ with

a decay constant ' 3.2 which is again close to 2βd2. Bottom inset: For

very small ν, contour length falls off with ν as a power law with an

exponent ' 0.9. For all the above plots, we use L = 64 and S/L = 1.

Other simulation parameters are as in Table 2.1. 48
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Figure 4.2 Contact probability and velocity as a function of ν in a Gaussian

model for different values of S/L. (a): For S/L << 1, p0 does not

show much variation and its value remains close to 1/2. For S/L ∼ 1,

in the small ν region, the value of p0 is higher than 1/2 which then

saturates to its rigid barrier limit for high ν. For S/L >> 1, p0 starts

with very small value and then increases with ν, then saturates to

1/2. Higher the value of S/L, slower the tendency to reach 1/2. We

use L = 8 here. (b): The ν − V curve changes from convex to con-

cave as S/L is increased. The values of Vmax are 0.475nm/s, 3.50nm/s,

3.72nm/s, and 3.73nm/s for S/L = 1, 23, 29 and 212 respectively. Other

simulation parameters are as in Table 2.1. 49

Figure 4.3 Average energy of the membrane scaled by νd2 as a function of ν for

different values of S/L. The continuous line is from analytical calcula-

tion in the equilibrium limit, which matches with simulation for very

high S/L. Other simulation parameters are as in Table 2.1. 50

Figure 4.4 Results for multiple filaments. (a): The velocity scales with ρ. For

large value of ν, the velocity falls exponentially with a decay constant

' 3.18, which is close to the single filament case. We use S/L = 1 and

for the inset, N = 8; L = 128. (b): The ν−V curve changes from con-

vex to concave as S/L is increased. The values of Vmax are 0.477nm/s,

3.167nm/s, 3.616nm/s, and 3.723nm/s for S/L = 1, 25, 27 and 210 re-

spectively. We use N = 4; L = 32 here. Other simulation parameters

are as in Table 2.1. 51

Figure 4.5 Merging of protrusions. We plot the quantity (l−k)
k , for the membrane

with only two binding sites at a distance k apart, with l being the con-

tour length between the two binding sites. For a given k, this quantity

decreases with ν exponentially with a decay constant' 1.44, which in-

dicates merging of two protrusions for large ν. Here we use L = 1024

and S/L = 1. Inset: Two protrusions merge as we increase ν. The

average height profile of the membrane is shown for different values

of ν. Note that the height of the protrusions also become shorter as

ν increases. The ν values appearing in the legends are in the unit of

pN/nm. These data are for k = 256. We use L = 1024 and S/L = 1.

Other simulation parameters are as in Table 2.1. 51
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Figure 5.1 Shape of the membrane for different κ and σ. We note that for small

σ but large κ (a and b), the shape of the membrane is such that the

height gradient closer to i = b (where the filament is driving the

membrane) has smaller magnitude. On the other hand, for both large

κ and σ (c and d), the shape of the membrane is linear, where the

height gradient at all the sites are constant, with a peak in height at

the site i = b. 54

Figure 5.2 Energy cost of movement at the binding site. (a): The value of h′′′′b

varies non-monotonically with σ for large κ. (b): For large κ, ∆E+
b ,

which is the energy cost when the binding site increases by one unit,

varies non-monotonically with σ. In the small σ region, the variation

in ∆E+
b is mainly due to the variation in the bending energy cost ∆B+

b ,

as the elastic energy cost is negligible. For large σ, on the other hand,

the variation in ∆E+
b is mainly dominated by elastic energy cost ∆S+

b ,

as the bending energy cost saturates for large σ. We use L = 64, κ =

1.2pN and S/L = 1 here. Other simulation parameters are as in Table

2.1. 56

Figure 5.3 Variation of h′′i with i for different values of σ and large κ. In order

to compare the curvatures of h′′i for different σ at the binding site,

we subtract h′′b from it. (a): The quantity h′′i − h′′b for different values

of large σ. We note that when σ decreases, the curvature of h′′i at the

binding site increases. Thus h′′′′b will increase as σ decreases in this

region. The values of h′′b for σ = 0.6, 0.8 and 1.0 pN are 6.97× 10−3,

2.60× 10−3 and 1.30× 10−3 (in units of d) respectively. (b): The quan-

tity h′′i − h′′b for different values of small σ. We note that the curvature

of h′′i at i = b decreases as σ decreases. Thus, in this region, h′′′′b will

decrease as σ will decrease. The values of h′′b for σ = 0.02, 0.04 and

0.06 pN are 1.17, 0.92 and 0.76 (in units of d) respectively. We use

L = 64 ans S/L = 1 here. Other simulation parameters are as in Table

2.1. 57
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Figure 5.4 σ−V curve for different values of κ and L. (a): For small value of κ, the

velocity falls monotonically with σ and the σ− V curves are convex.

For large value of κ, the curve becomes non-monotonic, with a peak

at σ = σ∗. Top left inset: The value of σ∗ decreases with κ. Top right

inset: We zoom small σ region and note that V first decreases, reaches

a minima, then increases and reaches a peak value at σ = σ∗, then

decreases again with σ. Bottom inset: For very large σ, velocity falls

exponentially with decay factor 3.6 which is close to the analytically

predicted value 2βd2. For top right and bottom insets, we use κ =

1.2pN. For all the plots, we use L = 64 and S/L = 1. (b): For small

value of κ(= 0.01pN), the velocity scales as 1/L. Top inset: For large

value of κ(= 0.8pN) also, the velocity scales with 1/L. Bottom inset:

The value of σ∗ remains independent of L. Here, we use S/L = 1.

Other simulation parameters are as in Table 2.1. 58

Figure 5.5 σ− V curves for different values of S/L. (a): σ− V curves for small

κ and different S/L. For small S/L, the curves are convex, while for

S/L >> 1, the curves become concave. Inset: The contact probability

p0 is close to 0.5, when the value of S/L is not too large, however,

for very large S/L, p0 becomes negligible in the small σ. (b): σ − V

curves for large κ and different S/L. The curves are non-monotonic,
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1
I N T R O D U C T I O N

The cytoskeletol protein is found in most of the eukaryotic cells. It is equivalent to the skele-

ton of our body, which is responsible for the overall structure of the cell. The cytoskeletol

consists of three major proteins: Actin filaments, microtubules and intermediate filaments,

collectively known as biofilaments. Among them, actin is the most abundant protein in the

eukaryotic cell. These filaments consume chemical energy, grow and generate significant

amount of force. This force is used by the cell in their movements, which play an impor-

tant role in morphogenesis, wound repair, cancer invasion etc. [1–5]. Actin filaments also

play important role in other biological processes, like cell division, muscle contraction, cell

signalling etc. In the present chapter, we discuss about the actin filaments and its force gener-

ation mechanism. In the subsequent sections, we will discuss some recent experimental and

theoretical works related to this topic. Finally, we will motivate our thesis and briefly outline

our results.

1.1 force generation by actin filaments

The actin filament is a double helical structure, consisting of two protofilaments, both grow

parallel to each other. A schematic diagram of actin filament is shown in Fig. 1.1. The size of

each actin monomer is roughly 5.4nm. The actin filament is asymmetric and polar in nature

where the two ends, called the pointed end and the barbed end have different properties.

Polymerization is a reversible process where monomers are added and released (depolymer-

ized) from both ends of the filament. The rate of polymerization process depends upon the

actual monomer concentration near the filament end. A concentration of the monomer, at

which there is no net growth of filament, is known as the critical concentration. Due to the

heterogeneous nature of actin filaments, the two ends of the filaments have different critical

concentrations. The pointed end of the actin filament has a critical concentration six times

higher than the barbed end. Thus, at some monomer concentration, which is in between

the critical concentration of the two ends, the barbed end will have a net growth while the

pointed end will have a net shrink.

1



Actin monomer

Barbed end
Pointed end

Polymerization

Depolymerization

Figure 1.1: Structure of Actin filament. The actin filament is formed by two protofilaments, which
grow parallelly with each other. The actin filament is asymmetric, where one end, called
the barbed end has generally high growth rate than the pointed end.

The actin organises into different kind of structures, like linear bundle, two dimensional

networks, three dimensional gels etc. It is mainly concentrated in a layer just beneath the

plasma membrane. The growth of the barbed end of actin near the cell membrane pushes

the membrane and form the protrusion (Fig. 1.2). Two types of protrusions are mainly caused

by the actin polymerization: Filopodium, which are small finger like structures caused by the

parallel growth of actin filaments and the lamellipodium, which are broad structures caused

by the growth of branched actin networks. After the protrusion is formed, the leading edge

of the cell is attached with the cell-substrate. Finally, the rare part of the cell retracts and the

whole cell thus crawls forward with the help of myosin motors sliding on actin filaments.

The crawling motion of the cell is a non-equilibrium process as it is continuously driven

by actin networks. This process is very important in morphogenesis, would healing, tumor

invasion etc. For example, during morphogenesis, there is a targeted movement of the cells

to specific sites to form organs or tissues. For wound healing, cells move to the wound site

to kill the micro-organisms that cause infection. In all the above examples, the cell actually

crawls to reach the required target, for which the force generation by actin polymerization

is responsible. Recent experimental developments and theoretical models have provided us

with a better understanding of force generation by actin filaments and cell motility.
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Figure 1.2: Protrusion caused by actin polymerization. Filopodium are small finger like structures,
that are formed by the growth of parallel actin filaments. Lamellipodium are another type
of protrusion, which are caused by the growth of branched actin filaments. The figure is
produced from Ref. [6] with some modification.

1.2 experimental measurements of force-velocity curves

There are large number of experimental literatures, where the force generation mechanism

by actin filaments have been studied [7–21]. In these experiments, the filaments are generally

allowed to grow against some biological barrier and an external load (force) is applied in the

opposite direction of the filament growth. The velocity of the barrier decreases as the load

increases and this dependency is known as the force-velocity curve. The opposing force at

which the barrier velocity becomes zero is known as the stall force. This is also known as the

maximum force generated by the filaments.

The force-velocity curves are measured in many experiments, but surprisingly, the actual

nature of force-velocity curve is found to depend upon the experimental set up. In [7], the

forces generated in the process of actin-based propulsion is measured using a micromanip-

ulation experiment. A comet-like structure, growing from a coated polystyrene bead is held

by a micropipette while the bead is attached to a force probe. Both the pulling and push-

ing forces are applied and the force-velocity curve is measured. It is found that the curve

is linear for pulling forces and decays more weakly for pushing forces. The nature of the

force-velocity curve is thus convex. In [8], the force-velocity curve of few growing actin fila-

ments is experimentally measured, which are growing between magnetic colloidal particles.

When magnetic field is applied, the colloidal particles assemble into chains under controlled

loading or spacing. When the filaments elongate, the beads separate, and the force velocity
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curve is precisely measured. The force-velocity curve is found to be convex in nature. In a

similar type of experiment [9], a population of actin filaments are allowed to grow against

a load applied by magnetic microparticles. The filaments are arranged in stiff bundles by

the actin bundling protein fascin and are constrained to point toward the applied load. The

velocity of filament elongation is measured as a function of force. In this case also, the nature

of the force-velocity curve is found to be convex.

In [10], the growth velocity of actin networks against a flexible cantilever is measured using

a differential atomic force microscope. The force-velocity relationship of the growing network

is measured until network elongation ceases at the stall force. They found that the growth

velocity of a branched actin network is load-independent over a wide range of forces. The

actual nature of the curve is found to be concave. Surprisingly, the growth velocity is found

to depend upon the loading history rather than solely on the instantaneous load [10]. In [11],

an atomic force microscopy cantilever is placed in the path of a migrating keratocyte cell. The

deflection of the cantilever provides a direct measure of the force exerted by the lamellipodial

leading edge. The force-velocity curve obtained from this measurement is concave. In [22],

the force-velocity relationship of fish keratocytes cell is measured using spherical-probe-based

scanning force microscope. In this case also, a concave force-velocity relation is obtained. In

[12], the actin driven protrusion forces in the lamellipodium of keratocytes cell is studied.

A vertically mounted glass fiber acted as a flexible barrier is placed in front of migrating

keratocytes with parallel phase contrast microscopy. A laser beam was coupled into the fiber

and allowed detecting the position of the fiber by a segmented photodiode. An interesting

force-velocity curve is obtained in this case. The velocity initially increases with force and

then decreases at high forces. They showed that the initial increase in velocity is an artifact,

caused by the curved geometry of the fiber. Due to the fiber curvature, the contact area

between fiber and lamellipodium increases with time. Due to the increase in contact area,

more filaments push the barrier as the force increases, thus the velocity increases with force

in this regime.

1.3 theoretical studies of force-velocity curves

There are large number of theoretical literatures, where the force generation mechanism

by actin filaments have been studied [13–19, 23–29]. In most of these literatures, the actin

filaments are modelled as rod-like polymers growing and pushing against a rigid barrier (Fig.

1.3) [13, 17, 19, 23]. The filaments are allowed to grow (shrink) by the addition (subtraction)

of monomers. In order to measure the stall force or force-velocity curve, an external force (F)

is applied in the opposite direction of the growing filaments [13–19]. As the magnitude of

the force increases, the velocity deceases and finally becomes zero at the stall force.
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Figure 1.3: Theoretical modelling of force generation by actin filaments. The actin filaments are as-
sumed to be rod-like elements growing in the upward direction against a rigid wall like
barrier. An external force F is acting on the barrier in the opposite direction of the fil-
ament growth. The filaments, which are not in contact with the barrier, grow upward
(downward) with force independent rate U0 (W0). The filament that is in contact with the
barrier grows with force dependent rate U(F). The barrier grows upward (downward)
with rate R+ (R−), which may in general depend upon the external force.

In theoretical literatures also, the nature of force-velocity curves are found to depend upon

the modelling details. Force generation by a single actin filament growing against a barrier

has been explained using a simple Brownian ratchet mechanism in [13]. Thermal fluctua-

tions of the barrier create a gap between the barrier and the filament tip, making it possible

for the filament to grow by adding one monomer in the gap. This mechanism predicts a con-

vex force-velocity curve. The above simple model has been subsequently generalized in [14],

where details of interaction between the actin monomers and the barrier have been consid-

ered. This study also predicts a convex force-velocity curve. In [15], the three-dimensional

dynamics of the growth of a semi-flexible actin polymer against a fluctuating obstacle is

studied numerically. The velocity is measured as a function of the external load and a convex

curve is obtained in this case. However, when the Brownian ratchet mechanism is extended

for multiple filaments, the nature of the force-velocity curve is found to crucially depend

on how the details of the interaction and load sharing among the filaments were modelled

[16–19]. In [16], a two-dimensional model for lamellipodial protrusion is studied by consid-

ering the filament as well as barrier flexibility. Two types of sharing of work of protrusion

is considered among the filaments: A perfect work sharing (PWS), where the total work of

protrusion is divided perfectly evenly among all polymerization events and a zero work

sharing (ZWS), where only the lead polymerization event does the maximum possible pro-

trusion work. The shape of the force-velocity curves are found to be convex, but for the ZWS

case, the velocity falls much faster in the small force region in comparison to the PWS case.

In [17], the force generated by parallel actin filaments is studied against a rigid barrier. The
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filaments do not have any lateral interactions and are only interacting mechanically with the

barrier. The force-velocity curve is found to be concave for small force while convex for large

force. They also identify two regimes: At low force, there is a non-condensed regime where

the filaments are spread out spatially while at high force, there is a condensed regime, where

filaments accumulate near the barrier. In [18], the force generation by parallel biofilaments

have been studied with lateral interactions among the protofilaments. It is noted that the

force-velocity curves explicitly depend upon the geometry of the filament bundles as well as

the interaction strength between the protofilaments. However, the shape of the force velocity

curves remain convex in any case.

There are certain models, which showed a crossover from convex to concave force-velocity

curve, when some model parameters are varied [23, 30, 31]. In [30], a hybrid mesoscopic

model for actin polymerization is developed that combines the microscopic dynamics of

semiflexible actin filaments and the viscous retrograde flow of actin network modelled as a

macroscopic gel. It is shown that the force-velocity curve can be convex as well as concave,

depending on the characteristic time scale of recoil of the gel like network. In [31], the growth

of multiple biofilaments have been studied against a hard obstacle in order to elucidate the

nature of load sharing in the growth of these biopolymers. They vary the diffusion coefficient

and the number of filaments and obtain the force velocity curve of different nature. For small

number of filaments, a convex force velocity curve is obtained while for large number of

filaments with large diffusion coefficient, a concave force velocity curve is obtained. In [23],

the growth of branched actin networks is studied against a rigid movable wall. They use

several parameters in their model: The initial distance of the movable wall form the filament

tip, minimum distance between two branching point, maximum number of branches allowed

to form etc. By varying these parameters, both the convex as well as the concave force-

velocity curves are obtained.

1.4 measurement of stall force

The stall force generated by actin filaments is measured in many experimental literatures. It

is found that single actin filament generates forces of the order of peconewton while actin

gels or comet tails generate forces of the order of nanonewtons. In [20], assembly of actin

filaments is observed using evanescent wave fluorescence microscopy. It is found that poly-

merization of an individual actin filament produced a force of at least 1.3 pN, close to the

theoretical maximum (∼ 2pN) under the same experimental conditions. In [21], the force

generated by the polymerization of multiple actin filaments against a barrier is measured

directly, using an optical trap. It is found that the growth of approximately eight parallel-

growing actin filaments can be stalled by relatively small applied load of 1pN, which is
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equal to the theoretical stall force required to stall a single actin filament. They explain their

observation by arguing that only the longest filament is in direct contact with the barrier,

suggesting that the separate filaments in the bundle do not co-operate with each other in the

force generation mechanism. In [12], the actin driven protrusion forces in the lamellipodium

of keratocytes cell is studied using a glass fiber as a vertical barrier. The cell is found to stall

at force 2.9± 0.6nN. Assuming the density of filaments to be 240 filament per µm, they esti-

mated the stall force per filament to be 1.7± 0.8pN. In [7], the forces generated in the process

of actin-based propulsion is measured using a micromanipulation experiment. They apply

both the pulling and pushing forces in the range −1.7nN to 4.3nN. They note that a force

of 4.3nN is not sufficient to stop the growth of the actin comet. Because of comet buckling

under larger forces, the value of the stall force cannot be reached experimentally, but a lower

estimate is given to be 4.3nN. In [32], the compressive force generated by actin comet tails is

studied on lipid vesicles. They developed a model system where large artificial lipid vesicles

coated with the protein ActA are propelled by actin polymerization in cytoplasmic extract.

They estimate the magnitude of force generated by actin comet tails in the range 0.4− 4nN.

In [11], the force generated by growing keratocyte cell is measured using an atomic force

microscopy cantilever. The whole cell stall force is found to be ∼ 40nN in this case.

The theoretical prediction of stall force for a single filament ranges form one to several

piconewtons. In [17], the expression for the stall force is found to be Fs = kBT
d ln U0

W0
, where

d is the actin monomer length and U0 (W0) is the (de)polymerization rate of actin filament.

Using a monomer concentration of 0.24µM, the stall force for a single filament, using the

above expression is ∼ 1pN. In [13], a similar expression for the stall force is obtained. Within

a comparatively higher monomer concentration (10µM), the stall force of a single filament

is found to be ∼ 7.8pN. For multiple filaments, the stall force is found to scale linearly with

the number of filaments in [17, 18, 33]. However, an absence of linear scaling of stall force

with the number of filaments has been reported in [19, 29] and was explained by using

effects like ATP hydrolysis of actin monomers. In [29], the force generation by multiple actin

filaments has been studied using the ATP-hydrolysis. The filaments are growing against

a hard obstacle which moves diffusively in the force field of an optical trap. It is noted

that the stall force of N filaments is less than N times the stall force of a single filament.

In another study [19], collective dynamics and force generation by biofilaments have been

studied against a rigid wall using ATP (GTP)-hydrolysis of actin (microtubule) monomer. In

this case, the hard wall is not diffusing but only moves when filament pushes it. The stall

force of N filaments is found to be greater than N times the stall force of a single filament.

Thus, unlike in [29], the collective growth of filaments enhances the stall force in this case.
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1.5 importance of membrane properties on the force generation mecha-

nism by actin filaments

The actin filaments grow against the cell membrane or a biological barrier in in vitro experi-

ments, which has a central importance in actin polymerization and cell motility [34–37]. The

mechanical characteristics of the plasma membrane, such as, the membrane tension directly

affects the rate of those processes that involves the membrane deformation. For example,

extension of the plasma membrane that takes place during cell motility and cell spreading

depends strongly on membrane tension. In [38], the authors note that an artificial increase in

membrane tension in immortalized mouse embryonic fibroblasts cell stopped the lamellipodia

protrusion while a decrease in tension restored the protrusion. In [39], it was shown that

when the membrane tension is decreased by adding certain ampiphillic compounds, the

lamellopodial extension rate increases, while in situations where membrane tension is in-

creased using osmotic methods, the extension rate drops. This observation shows that there

is an inverse relationship between tension and extension rate. Although the membrane ten-

sion is generally considered as an obstacle to cell movement, it was shown in [40] that the

membrane tension also optimizes the motility in Caenorhabditis elegans sperm cells by stream-

lining actin polymerization in the direction of movement. They observed that membrane

tension reduction leads to an unorganized and rough lamellipodium, which composed of

short filaments angled away from the direction of movement. Due to the lack of directional

polymerization of filaments, the cell displacement speed is reduced. On the other hand, an

increase in tension reduces lateral membrane protrusions in the lamellipodium, and fila-

ments are longer and more oriented toward the direction of movement, thereby speed up

the motility. In an in vitro reconstitution of lipid bilayer in [41], it has been found that mem-

brane elasticity causes formation of filament bundles that support membrane protrusions

from branched filament network. The above literatures show that plasma membrane and its

elastic tension play a very important role in actin polymerization and cell motility. The cell

membrane also possesses bending rigidity which has been measured in many experimen-

tal literatures [42–46]. The value of the membrane rigidity is found to depend not only on

the measurement techniques but also on the environmental conditions such as immersing

medium and presence of various molecules and salts. However, the effect of bending rigidity

on the force generation mechanism is not directly shown in any of these experiments.

We note from above experimental literatures that the membrane, against which actin fila-

ments grow, may in general have shape fluctuations and other properties, like elastic tension

or bending rigidity etc. However, in most of the theoretical literatures, the shape fluctuations

or other properties of the barrier have been neglected and it is considered as a rigid wall like

object. There are, however, certain theoretical models where these properties are explicitly

8



considered. In [24] a flexible plasma membrane was explicitly modelled and it was shown

that thermal fluctuation of this flexible obstacle substantially enhances the growth velocity of

a filopodial protrusion. It was argued that in the case of a flexible membrane, a filament only

has to overcome the local bending energy in order to polymerize, whereas for a rigid obsta-

cle, the full load force must be overcome. Thus, a flexible membrane gives rise to a larger

velocity for a given load. In [25], the growth of actin filaments have been studied against an

elastic membrane. The elastic membrane was described using a solid-on-solid (SOS) model

and the leading edge of the actin mesh was modelled by an advancing uncorrelated front.

The elastic energy of the membrane is described by a one-dimensional SOS Hamiltonian,

which is proportional to the contour length of the membrane. The steady-state fluctuations

of the driven membrane show a non-monotonic behavior with the driving rate, where the

strongly driven and weakly driven regimes are separated by a minimum in the width of the

membrane profile. This similar modelling strategy is generalized in [26] to understand cer-

tain aspects of crawling motion of a cell on a flat substrate, particularly, how the asymmetry

between the leading and trailing edge of the membrane decides the shape and velocity of

the membrane. In [24, 27, 28], the growth dynamics of actin filaments is studied, where the

energy of the membrane is described by a Helfrich Hamiltonian [47]. In [27], the growth of

branched actin network is studied in order to investigate the effect of molecular transport

on the force-velocity relation. The energy of the membrane is described using a Helfrich

Hamiltonian, containing an elastic energy term and a bending energy term. The elastic en-

ergy is taken to be proportional to the square of height gradients while the bending energy

is proportional to the square of the Laplacian of height. They note that facilitated transport

of G-actin monomer helps the actin monomer to reach near the membrane leading edge and

can enhance the growth of the actin network.

1.6 motivation and plan of the thesis

In this thesis, we study the force generation by actin filaments growing against a barrier.

The filaments are polymerizing against the barrier and push it. The barrier also undergo

independent thermal fluctuations, unaided by the filaments. We are interested to know how

the local shape fluctuations of the barrier, its elastic properties or bending rigidity affect the

force generation process. We are also interested to know how the independent dynamics of

the barrier play a role in this mechanism.

In most of the theoretical literatures discussed above, the force generation mechanism is

studied against a rigid barrier [13, 17, 19, 23, 31, 48, 49]. In some of the models, the barrier

is even taken as a passive object without any independent dynamics [17, 19, 23]. Inside

a cell, actin filaments grow against a cell membrane, which in general have local shape
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deformations caused by many different biological processes. Even in in vitro experiments,

the biological barrier against which actin filaments grow, may have shape fluctuations and

other properties, like elasticity, bending rigidity etc. We ask a very general question here:

What happens when such a barrier with above properties is placed in the path of growing

filaments? How the growth of the filaments are affected by the presence of the such a barrier

and what is the effect on the barrier due to the presence of these filaments?

We use simple lattice gas model for the description of our system. In order to study the

system numerically, we use kinetic Monte Carlo simulation technique. The filaments are

modelled as parallel rigid rods growing upward and pushing the barrier. The barrier is

modelled using simple lattice gas modelling, by considering its shape fluctuations and other

properties, like elasticity, bending rigidity etc. We first model the barrier by a surface having

local shape deformations. An external force is acting on the barrier in a direction opposite

to the growth of the filaments. The dynamics of such a barrier can be described by a one-

dimensional Kardar-Parisi-Zhang (KPZ) surface. The barrier fluctuates independently and

due to the external force, it has a bias in the opposite direction of the filament growth.

The filaments, on the other hand, try to push the barrier upward, thereby work against the

external force. We further model the barrier by a Solid-On-Solid (SOS) surface considering

other properties like elasticity and/or bending rigidity etc. In these cases, the barrier try to

remain flat in order to minimize its elastic and/or bending energy and the filaments grow

and try to distort the barrier. Thus, in all the cases, there is always a competition between

the filament and the barrier dynamics and the dynamics of one is affected by the other.

In all the above cases, we assume that the filaments can always grow and push the barrier,

however, another way of modelling the filament barrier interaction is that a filament can only

grow when local shape fluctuations of the barrier create a space for the insertion of an actin

monomer. In our last chapter, we use both these filament-barrier interactions considering

different types of the barrier along with a rigid barrier and note that these two interactions

give rise to qualitatively different results.

In chapter 2, we study the force generation by actin filaments growing against a barrier

having local shape fluctuations. We model the barrier as a KPZ surface. An external load is

acting in the direction opposite to the filament growth. The local shape deformation allow

the filaments to grow by making local distortions in the barrier that have less energy cost.

Thus, the force generation process is enhanced in the presence of local shape fluctuations

of the barrier. Indeed, we note that stall force in this case is comparatively higher that the

rigid barrier keeping other conditions same. We also note that the relative time scale between

the barrier dynamics and the filament dynamics is very crucial, and the shape of the force

velocity curve (convex or concave) changes as this relative time scale changes. The stall

force decreases as the barrier dynamics becomes faster than the filament dynamics. The stall
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force is also found to depend on the barrier size for single filament, while for N number of

filaments, the stall force is independent of system size and scales linearly with N.

In chapter 3, we study the force generation mechanism by actin filaments growing against

an elastic barrier. The elastic energy is taken to be proportional to the sum of local height

gradients (or the contour length) of the barrier. We note that the average velocity of the

barrier shows non-monotonic variation with the elastic constant (µ), with a peak at µ = µ∗.

We note that µ∗ is the elasticity where the elastic force of the barrier exactly balances the

polymerization force of the filament. Below µ∗, we do not have the steady state and the elastic

energy of the barrier increases with time. For an elastic barrier also, we note that the relative

time scale plays a crucial role. The shape of elasticity-velocity curve (convex or concave)

depends upon this relative time scale. The value of µ∗ decreases as the barrier dynamics

becomes faster. Within small filament density, µ∗ is found to be independent of filament

density. However, for high enough filament density, filaments are no longer independent of

each other, and µ∗ starts decreasing with filament density.

In chapter 4, we study the force generation by actin filaments growing against an elastic

membrane, but unlike Chapter 3, the elastic energy is proportional to the square of the local

height gradients. The form of the elastic energy directly affects the qualitative nature of the

results in the present case. The elastic energy cost, in this case, will increase as the contour

length increases, even for very small elasticity. Thus, the system is always in the steady state

for any non-zero value of elasticity. The shape of elasticity-velocity curve also depends upon

the relative time scale in a similar way as in the previous case.

In chapter 5, We study the force generation by a set of parallel actin filaments growing

against a membrane whose energy is described by a Helfrich Hamiltonian. The Hamiltonian

contains an elastic energy term, which is proportional to the square of local height gradients

and a bending energy term, which is proportional to the square of the Laplacian of height.

We note that the shape of the membrane changes qualitatively when we change the value

of elasticity (σ) keeping the bending rigidity (κ) fixed at some moderate or large value. This

effect gives rise to a non-monotonic variation in the bending energy cost in order to push

the membrane. We also note that there is a rich interplay between the elastic and bending

energy scales in the system: For large κ and σ, the variation in elastic energy cost in order

to push the membrane dominates over the bending energy cost while for large κ but small

σ, variation in the bending energy cost dominates. This effect gives rise to non-monotonic

variation in the membrane velocity with σ. Starting from a non-zero value at σ = 0, the

velocity first decreases with σ, reaches a minimum, then increases again, reaches a peak, and

finally decreases to zero as σ becomes very large. The peak position of the curve (σ∗) shifts

towards the smaller elasticity as the bending rigidity is increased. The value of σ∗ is inde-

pendent of filament density or membrane size within small density of filaments, however,

for large filament density, σ∗ explicitly depends upon the filament density as well as the
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size of the membrane. For small κ, the σ−V curve is convex and changes to concave when

the membrane dynamics becomes faster, however, for large κ, the σ−V curves remain non-

monotonic and σ∗ decreases as the membrane dynamics becomes faster. The κ − V curves

are monotonic for any value of σ.

In chapter 6, we study the comparison between the two force generation mechanisms,

where the filaments barrier interaction have two different forms. In one case, the filament

only grows when there are sufficient gap between the filament tip and the barrier while in

the other case, the filament is able to grow and push the barrier even if there is no gap be-

tween the barrier and the filament tip. We note that this very small difference in the filament

barrier interactions gives rise to many qualitative differences between these two processes.

Particularly, how the relative time scale between the barrier and the filament dynamics influ-

ence the force generation properties, are significantly different for these two cases.
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2
A C T I N F I L A M E N T S G R O W I N G A G A I N S T A

K A R D A R - PA R I S I - Z H A N G ( K P Z ) M E M B R A N E

2.1 introduction

In this chapter, we study the force generation by parallel actin filaments growing against a

barrier having local shape fluctuations. An external force (or load) is applied on the barrier

against the direction of filament polymerization. To keep our description simple, we use a

lattice gas model and describe the barrier by a Kardar-Parisi-Zhang (KPZ) interface. A KPZ

interface is a well studied model for surface height fluctuations in the presence of a field

[50–61]. Under the action of this field, the interface tends to move in the direction of the

field and thus have a non-zero velocity in this direction. In our model, the direction of this

external field (or force) is opposite to the filament polymerization. Since, the barrier can not

penetrate the filaments and it has to always stay above the filament tips, it gives rise to a

competition between the filament and the barrier dynamics. We are interested to find out

how the presence of the fluctuating barrier affects the dynamics of the actin filaments, and

how the presence of the filaments affects the shape of the barrier.

Our numerical simulations and analytical calculations show that there is a rich interplay

between the polymerization dynamics of the filaments and the shape fluctuations of the

barrier. In order to polymerize, the filaments must push against the barrier and work against

the external force, either causing a local change in its profile (which requires less energy) or

causing a global movement of the whole barrier (which involves a large energy cost). For

small and intermediate value of the external force, the barrier motion is governed by its

global movement, and for large force, the local fluctuations become important. These local

movements cost less energy and can continue even when the force is significantly large. As

a result, the stall force in our system is much higher than that for a rigid barrier [17]. For a

single filament, the stall force is found to increase with the size of the barrier. For N filaments

stall force is independent of the barrier size and scales linearly with N. The barrier shape is

also affected by the growing filaments and the scaling behavior of its height profile shows

continuous variation as a function of the external load.
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There are two time-scales in our system, one associated with the (de)polymerization of the

filaments and the other with the thermal fluctuations of the barrier. Our results show that

the choice of these time-scales may crucially determine the nature of the force-velocity curve.

This is because the local movements of the barrier make increasingly important contribution

to its velocity as the thermal fluctuations become faster. Even for small or intermediate

load, therefore, the barrier velocity is not governed by its global movement alone and this

changes the qualitative nature of dependence of velocity on load. The stall force is also

found to decrease for faster barrier dynamics. Some of the results discussed above have been

published in [62].

This chapter is organized as follows. In section 2.2, we describe our model. Our results for

the single filament and multiple filaments are presented in sections 2.3 and 2.4, respectively,

and conclusions are in section 2.5.

2.2 description of the model

The present model consists of N parallel filaments growing against a barrier with a fluctuat-

ing height profile (see Fig. 2.1). We model the filaments as rigid polymers, made of rod-like

monomers of length d, such that a (de)polymerization event (decreases) increases the length

of the filament by an amount d. The barrier is modelled as a one dimensional surface. In

our lattice model, the discrete surface elements are represented as lattice bonds of length λ,

which can have two possible orientations, ±π/4. We denote these two cases by symbols /

and \ and call them upslope and downslope bonds, respectively. Height at any particular

lattice site i is defined as hi = δ/2 ∑i−1
j=1 tan θj, where θj is the orientation of the j-th bond and

δ =
√

2λ. The total number of such bonds is L. One / followed by a \ forms a local hill and

in the reverse order \/ they form a local valley. The local height of the surface fluctuates due

to transition between these hills and valleys. When a local hill (valley) at a given site flips

to a valley (hill), the height of that particular site decreases (increases) by an amount δ. We

assume δ is equal to the monomer length d in most of our cases. As explained below, this

assumption means that height fluctuation of the surface creates a gap which is just enough

for insertion of a monomer. Towards the end of the sec 2.3, we briefly discuss the case of

δ 6= d. The interface described above has some specific properties, like, the magnitude of the

height difference between two consecutive sites remains conserved. The contour length of

the interface also remains conserved. This type of simple modelling makes it easier to han-

dle the problem analytically. However, in our later chapters, we will relax these constraints

when we consider the elastic or bending energy of the barrier explicitly.

A filament whose tip is in contact with the barrier, is called a bound filament and in

absence of any such contact, it is called a free filament. The surface site where a bound
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Figure 2.1: Schematic representation of the KPZ barrier model. (a): Polymerization of a bound fila-

ment by causing a local change in barrier height with rate U0e−
βFd

L . (b): A bound filament
polymerizes by causing global movement of the whole barrier with rate U0e−βFd. (c): A
free filament polymerizes and depolymerizes with rates U0 and W0, respectively. Since
these processes do not involve any barrier motion, these rates are independent of F. (d):
Thermal fluctuation of the barrier: a local valley can flip to a hill with rate R+ and the re-
verse process occurs with rate R−. We use local detailed balance, R+/R− = exp(−βFd/L),
except at the binding sites, where hill to valley transition may be blocked due to presence
of a filament.
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filament can form a contact, is called a binding site. When a bound filament polymerizes,

it creates space for insertion of another monomer by pushing the barrier up and in this

process perform work against the external load (which tends to push the barrier down).

When the bound filament pushes against a local valley, that valley flips to a hill and the

height of the binding site increases by an amount d [Fig. 2.1(a)]. However, polymerization of

a bound filament which is not in contact with a local valley, requires a global movement of

the whole barrier as shown in Fig. 2.1(b), when height of all the L sites are increased by an

amount d. Assuming F/L is the load per site, the energy cost for the first process is just Fd/L,

and for the second process it is Fd. Following the rule of local detailed balance, we assign

rates U0exp(−βFd/L) and U0exp(−βFd) to these two types of polymerization processes,

respectively. Here, β is the inverse temperature and U0 is the free filament polymerization

rate that does not involve any barrier movement and hence is independent of F. We also

assume the depolymerization rate is same for both free and bound filaments and is denoted

as W0 [see Fig. 2.1(c)]. When a bound filament depolymerizes, it loses contact with the

barrier and becomes a free filament. In certain configurations, when there is only one bound

filament, its depolymerization results in an unsupported barrier.

Apart from being pushed by the filaments, the barrier can also show thermal fluctuations,

when local hills can flip to valleys and vice versa. However, due to presence of the filaments,

these transitions can sometimes get blocked. For example, if a bound filament is in contact

with a hill, then that particular hill cannot flip to a valley, until the filament depolymerizes

and a gap is created for a local downward movement of the barrier. When both forward

and reverse transitions are allowed, their rates satisfy local detailed balance
R+

R−
= e−βFd/L,

where R+ is the rate at which local surface height can increase (i.e. a valley flips to a hill)

and R− be the reverse transition rate [see Fig. 2.1(d)]. Note that in absence of any external

load F, the transition between hills and valleys become symmetric at all sites other than the

binding sites and the surface has a local Edwards-Wilkinson dynamics [63]. For non-zero F,

hill to valley transitions are generally favored (except, possibly, at the binding site) and the

barrier behaves like a KPZ surface with a downward bias.

We perform simulations using kinetic Monte Carlo technique. The relative time scale be-

tween the filament dynamics and the barrier dynamics is quantified by a parameter S . For a

system consisting of N filaments and L barrier sites, each Monte Carlo time-step consists of

N filament updates and S independent barrier updates. In case of a bound filament polymer-

ization, the barrier heights are also simultaneously updated. More specifically, for N < S ,

we first choose a filament at random and perform polymerization or depolymerization move

as described above. Then we choose S/N barrier sites in random sequential order and up-

date them. Repeating this process N times completes one Monte Carlo step. Similarly, for

N > S , we first perform N/S filament updates and then choose one barrier site at random
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U0 Free filament polymerization rate 2.784s−1

W0 Filament depolymerization rate 1.4s−1

d Size of an actin monomer 2.7nm
T Temperature 300K

Table 2.1: Parameters used in our simulation. The value of parameters U0 and W0 are taken from Refs.
[1, 64] and the value of d is taken from Refs. [1, 23].

and update it; repeat this process S times and that defines one Monte Carlo step. We assume

periodic boundary condition for the surface and an equal number of upslope and downs-

lope bonds, i.e. no overall tilt. We start with an initial configuration where all N filaments

have unit length, containing one monomer each and the upslope and downslope bonds are

placed alternatingly (a flat surface). We let the system evolve for a long time, according to

above dynamical rules. All our measurements are performed in steady state. The various

simulation parameters are given in Table 2.1.

Note that the relative time-scale between the surface and filament dynamics can also be

changed by rescaling R+ and R−, but we have used R− = U0 and R+ = U0e−βFd/L through-

out and controlled the relative time-scale by S instead.

2.3 results for single filament

For a single filament, we first present the results for S = L and later we consider the effect

of variation of S . We define the velocity V of the barrier as the rate of change of the average

height of the surface after the system has reached steady state. We present the force-velocity

curve in Fig. 2.2(a). This curve has a convex shape where velocity decays rapidly for small

force, and for large force it decays slowly. In fact for small and intermediate values of force,

the velocity falls off exponentially (Fig. 2.2(a), inset) and close to stalling it shows deviation

from the exponential form. We explain below that the exponential dependence originates

from the global movement of the barrier [as shown in Fig. 2.1(a)] which dominates V for

small and moderate F range. In Fig. 2.2(b) we show the variation of stall force Fs with barrier

size L. Stall force increases with L, although logarithmically slowly. Note that stall force

is often interpreted as the maximum polymerization force generated by the filament and

therefore it is somewhat surprising that it depends on the size of the barrier. This is because,

as shown below, in our system the local fluctuations of the barrier, which depend on L, make

substantial contribution towards its net velocity and this becomes particularly significant in

the stalling regime.
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Figure 2.2: Force-velocity characteristic and stall force for a single filament. (a): Force-velocity curve
has a convex shape. Inset shows exponential decay of the barrier velocity for small and
intermediate F, when the global motion of the barrier dominates. Close to stalling the local
fluctuations become important. We have used L = 512 here. (b): Stall force increases with
barrier size L. In both the panels, we have used S/L = 1. Discrete points show simulation
data and continuous lines show analytical results. Other simulation parameters are as in
Table 2.1.

2.3.1 Analytical calculation of velocity due to global movement

In our system there are two possible barrier movements: Global and local. In a global move-

ment, a bound filament polymerizes by pushing the whole barrier up, such that the average

height changes by an amount d. The rate at which this process happens is U0 exp(−βFd). Let

this process contribute a velocity V1 to the barrier in steady state, which can be written as

V1 = p0dU0exp(−βFd). (2.1)

Here, p0 is the probability that the filament is in contact with the barrier. Note that here we

have ignored the possibility that the bound filament is pushing against a valley (in that case

no global movement takes place, only a local flip is sufficient for polymerization). In fact we

have verified in our simulation (data presented in Fig. 2.3(b) ) that the probability of finding

a valley at the binding site is indeed small.

To write V1 as a function of F we still need to calculate p0. Define pi as the probability that

the distance between the filament tip and the binding site is i. Clearly, i = 0 corresponds

to the contact probability. It is easy to see that for i > 0, the probability pi satisfies master

equation for a biased random walker:

dpi

dt
= W0 pi−1 + U0 pi+1 − (W0 + U0)pi (2.2)
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and for i = 0 one has

dp0

dt
= U0 p1 −W0 p0. (2.3)

Here, we have ignored any change in pi due to height fluctuations at the binding site. For

fast barrier dynamics, when height fluctuations increase, this assumption breaks down. In

steady state, these equations yield a recursion relation pi =
(

W0
U0

)i
p0, for positive i. This

recursion relation, along with the normalization condition ∑i pi = 1 yields the expression

p0 = (1−W0/U0), which is independent of F. So the final expression for V1 becomes

V1 = d(U0 −W0) exp(−βFd). (2.4)

2.3.2 Analytical calculation of velocity due to local fluctuations

To calculate the velocity due to local height fluctuations of the barrier, we consider a local

valley (hill) flipping to a hill (valley) which increases (decreases) the average height by an

amount d/L. As discussed in section 2.2, the transition rates at the binding site is different

from the rest of the system, since a hill to valley transition may be blocked, if a filament is in

contact. Then the barrier velocity due to local height fluctuations can be written as

V2 =
dU0

L

[(
(1 + p0)pv(0) +

L−1

∑
i=1

pv(i)

)
e−βFd/L − (1− p0)ph(0)−

L−1

∑
i=1

ph(i)

]
(2.5)

where pv(i) and ph(i) denote the probability to find a valley and a hill, respectively at a

distance i from the binding site. In the above equation, the first term on the right-hand-side

represents the situation where a valley at the binding site flips to a hill, due to thermal

fluctuations or due to being pushed by the filament. The second term presents flipping of a

valley to a hill at all the other sites. The third term describe the case when there is a hill at

the binding site which can flip to a valley when no filament is in contact. The fourth term

describe flipping of a hill to a valley in rest of the system.

The probabilities pv(i) and ph(i) can be calculated within a mean field approximation

by considering a KPZ surface with the binding site acting as a “defect site", where the

transition rates are different from the rest of the system. The shape of the barrier changes

due to transition between local hills and valleys. The probability to find a hill at a site s

located at a distance i from the binding site is ph(i) and it can be written as ρi(1− ρi+1),

where ρi is the probability that the bond preceding the site s has π/4 orientation and the

(1− ρi+1) is the probability that the bond immediately after the site s has −π/4 orientation.

Here, we have used mean-field theory and neglected correlation between the bonds. The

probability to find a valley at site s can similarly be written as (1− ρi)ρi+1. The transition
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rate from a hill to a valley is R− and the reverse process occurs with rate R+. For i 6= 0,

R+/R− = exp(−βFd/L). However, when i = 0, or, in other words, the site s is the binding

site itself, then although valley to hill transition is not affected, the reverse transition can take

place only when the filament is not in contact with the binding site. We therefore make the

simplifying assumption that the effect of the filament can be included by merely rescaling

the hill to valley transition rate at the binding site by the probability that the filament is

in contact. In section 2.3 we calculate the contact probability p0 = 1−W0/U0 ' 1/2. The

master equations describing the time-evolution of ρi can then be written as

dρi

dt
= (1− ρi)(R−ρi−1 + R+ρi+1)− ρi[R−(1− ρi+1) + R+(1− ρi−1)], for 2 ≤ i ≤ L− 1

(2.6)

and at the binding site,

dρ1

dt
= (1− ρ1)[R−(1− p0)ρL + R+ρ2]− ρ1[R−(1− ρ2) + R+ρ1(1− ρL)], (2.7)

where we have applied periodic boundary condition, which also gives

dρL

dt
= (1− ρL)(R−ρL−1 + R+ρ1)− ρL[R−(1− ρ1)(1− p0) + R+(1− ρL−1)]. (2.8)

We solve the above equations in steady state when the left hand sides vanish. To leading

order in 1/L, we find ρi = a+ bi/L, where a and b are related via the condition ∑L
i=1 ρi = L/2

and b satisfies the quadratic equation[
βFd
2L
− p0

4

(
1− 2

L

)]
b2 +

[
1− βFd

4L
− p0

2

(
1− 1

L

)]
b +

1
4

(βFd
L
− p0

)
= 0, (2.9)

one of whose roots can be discarded from the condition that 0 ≤ ρi ≤ 1 for all i. For a

given F, therefore, ρi varies linearly with the distance from the binding site with a gradient

1/L. For F = 0, we have a = (
√

2− 1) and b = (3− 2
√

2). For 0 ≤ F ≤ Fs, the range of

variation of a and b are rather small and occur at third or higher decimal places. Therefore,

ρi does not change significantly with F. Our simulation data in Fig. 2.3(a) show similar

qualitative behavior, although close to the binding site there is deviation of ρi from linearity.

The quantitative values of a and b however, do not match with simulations. We attribute this

mismatch to the mean field theoretic assumptions used in our calculation.

We calculate pv(i) and ph(i) from ρi and compare with simulation in Fig. 2.3(b). Notice

that from our analytical expression for ρi, it follows immediately that (pv(i)− ph(i)) is inde-

pendent of i and ∼ b/L. This has important consequence for our calculation of V2. Moreover,

the probability that the filament is in contact with a valley is given by pv(0)p0 and our nu-
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merical results in Fig. 2.3(b) show that this probability is rather small. Our calculations also

show that pv(i) and ph(i) have very weak dependence on F.

Thus, for large L, the total velocity of the barrier V = V1 + V2 can be written as

V(F) = d(U0−W0) e−βFd +
dU0

L

[
pv(0)(1 + p0)− (1− p0)ph(0) +

L−1

∑
i=1
{pv(i)(1−

βdF
L

)− ph(i)}
]

(2.10)

where we have retained terms upto order 1/L and ignored higher order terms. In Fig. 2.2(a)

we compare our calculation with simulation results and obtain reasonably good agreement.

For small F, the first term in Eq. 2.10 dominates the velocity and as F increases, local fluctua-

tions become more important. The last term in Eq. 2.10, within the braces, which represents

the velocity due to hill-valley fluctuations at all sites, except the binding site, is the most

dominant term in the local movement. In the stalling region, the positive contribution from

the global movement and the negative contribution from the local fluctuations cancel each

other, where the first and last term of Eq. 2.10 determine the major balance. The stall force

Fs can be obtained by graphically solving the above transcendental equation after putting its

left hand side zero. This gives stall force as a function of L and we compare this variation

with simulation results in Fig. 2.2(b). We find good agreement for large L but as expected,

for small L there are deviations. Note that the stall force in our system is substantially higher

than that for a rigid barrier [17]. Since the local movements cost much less energy, they can

continue even when the load is high.

2.3.3 Variation of the shape of the barrier with load

We have seen above how the barrier fluctuations affect the growth of the filament. The barrier

properties are also altered in this process. As the load increases, the height profile of the

barrier shows larger variation across the system. We characterize it by measuring the scaling

of average height with distance from the binding site: 〈h(r)− h(0)〉 ∼ rα, where h(r) is the

height of a site at a distance r from the binding site. In Fig. 2.4 we plot α as a function of the

external force, which shows that for small force α increases slowly, around the stalling force

there is a sharp increase and finally for very large force, α saturates to unity. Note that large

value of α indicates presence of large hills and valleys in the system. α = 1 corresponds to

a phase separation of upslope and downslope bonds in the system which gives rise to one

single large hill, the highest point being the binding site. This situation is similar to the case

of an elastic membrane, when the membrane tension is large and the membrane is stretched

completely. Note that our analytical calculation of the density profile gives, 〈h(r)− h(0)〉 ∼
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Figure 2.3: Average shape of the barrier for single filament. Discrete points show simulation results
and continuous lines show analytical prediction. (a): Probability ρi to find an upslope
bond as a function of scaled distance i/L from the binding site. ρi = 1/2 for i = L/2
and for larger i, we have ρi = 1− ρi−L/2. The open symbols correspond to F = 0 and the
close symbols correspond to F = 4pN. Symbols ∗ and ◦ are for L = 128 and × and � are
for L = 256. These data show that, except close to the binding site, ρi increases linearly
with i with a gradient ∼ 1/L. We also find that ρi remains almost same for these F values.
The continuous lines are analytical predictions, where green solid line is for F = 0 and
blue dashed line is for F = 4pN. (b): Probability pv(i) to find a valley at a distance i from
the binding site. For i = 0 the probability is substantially smaller compared to the rest
of the system, which means it is rather unlikely to find a valley at the binding site. The
symbols ∗ and ∆ represent F = 0pN and 4pN, respectively. We have used L = 512 here.
(c) and (d): [pv(i) − ph(i)] shows a sharp jump at i = 0 and then remains constant at a
value that scales as 1/L. The open symbols correspond to F = 0 and the closed symbols
correspond to F = 4pN. Symbols ∗ and ◦ are for L = 256 and × are � are for L = 512.
Other simulation parameters are as in Table 2.1.
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increase. Here, we have used S/L = 1 and L = 256 (red triangle) and 128 (blue circle).
Other simulation parameters are as in Table 2.1.

b
2L r2 + ( b

2L + a)r, which in the limit of large L gives, α = 1. In this case, we do not have any

F dependency in α, as we have neglected the F-dependency in the calculation of ρi.

2.3.4 Effect of faster and slower barrier dynamics

We find the nature of the force-velocity curve depends on the relative time-scale of the barrier

and filament dynamics. For faster barrier dynamics, the local fluctuations of the barrier

increases and as a result their contribution to the net velocity is also higher. This means

even for small force, the velocity is not dominated by the global movement (first term in Eq.

2.10) alone. In addition, our simple expression for the contact probability p0 = (1−W0/U0),

which was derived neglecting the local fluctuations at the binding site, does not remain valid

for fast barrier dynamics and p0 increases with F in this case (see our data in Fig. 2.5). As a

result, the velocity does not decay exponentially for small force, but follows a slower decay.

For a given F, as the barrier dynamics becomes faster, the velocity becomes higher and the

convex nature of the curve is gradually lost. Moreover, since stalling phenomenon in our

system can be described as a balance between global and local velocity of the barrier (see Eq.

2.10), larger contribution from local movement implies this balance is reached at a smaller

value of force. Therefore, for faster barrier dynamics we have a smaller stall force. We present

our data in Figs. 2.6(a) and 2.6(b).

Our data in Fig. 2.6(b) imply that in the limit of infinitely slow barrier dynamics, when the

barrier can be considered as an effectively rigid object, the stall force diverges. Note that even

in this limit, our model remains different from the rigid barrier case studied in [17], where
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Figure 2.6: Force-velocity characteristic for a single filament depends on the relative time-scale be-
tween the filament and barrier dynamics. (a): Velocity of the barrier vs scaled force for
different values of S/L. For large S/L, the convex nature of force-velocity characteristic
is lost. As S/L increases, the local fluctuations of the barrier become more important and
even for small F, the barrier velocity is not governed by the global movement alone, and
hence V does not decay exponentially anymore. Here, we have used L = 64. (b): Stall
force decreases as a function of S/L. Since local movements of the barrier become more
important for large S/L, the balance between global and local movements is reached at
a smaller force. Note however, that the x-axis is plotted in a log-scale, indicating a weak
dependence of stall force on the time-scale. Here we have used L = 256. Other simulation
parameters are as in Table 2.1.
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at least one filament is always bound to the barrier. For N = 1 this would mean whenever

there is a depolymerization, the barrier also moves down, along with the filament tip. On

the contrary, we allow unsupported barrier in our system and when the barrier is effectively

rigid, it shows only global movement which is always in the upward direction. The force

velocity curve is perfectly exponential in this case and zero velocity is reached at F → ∞

limit.

2.3.5 Results for δ < d

Throughout this section, we have considered the case where δ, the barrier fluctuation length

scale is equal to the monomer length d, i.e., the local movement of the barrier occur in steps

whose size is equal to that of a monomer. In this section, we show the results for δ < d for

single filament. The force velocity curve for different values of d/δ is shown in Fig. 2.7(a). We

note that the curves are convex even for much smaller values of δ. For small values of F, the

points collapse with each other, as for small F, only the global movement plays significant

role which is independent of the value d/δ, and the local fluctuations are negligible. On the

other hand, for large F, the velocity for smaller δ stalls at larger forces. This is because for

small value of δ, the local fluctuations are less costly and near the stalling regime, these local

fluctuations make significant contributions in the velocity. We explicitly show the variation

of Fs as a function of d/δ in the inset of Fig. 2.7(a) and note that Fs increases as (d/δ)0.6 . We

also note that the relative time-scale between the filament and barrier dynamics affects the

F−V curve in the same way as for d = δ case [Fig. 2.7(b)]. The stall force continues to show

dependence on the barrier properties [inset Fig. 2.7(b)]. Thus, we can say that the qualitative

conclusions of our earlier results also remain valid for δ < d. In other words, even when the

shape fluctuations of the barrier occur over much smaller length scales, their effect cannot

be ignored.

2.4 results for multiple filaments

In the case of N filaments in the system, we mainly consider the case when the ratio N/L

is small. We assume the binding sites are uniformly placed on the lattice, at a distance L/N.

Between the segment of two successive binding sites, the same considerations as in a single

filament case apply. We assume these segments are independent and apply our results for

the single filament case for each segment.

To start with, we consider the velocity of the barrier due to its global movement V1 =

p0NdU0 exp(−βFd). As before, p0 is the probability to find a filament in contact with the

barrier and p0N is the average number of bound filaments in the system. Here, we have
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Figure 2.7: Results for δ < d. (a): The force velocity curves are convex even for d/δ >> 1. For small
F, the points collapses with each other, as in this regime, only the global movements play
significant role and the local fluctuations are negligible. Inset (a): The stall force increases
as (d/δ)0.6, this is because for small δ, the local fluctuations becomes less costly and near
the stalling regime, these local fluctuations maintains the velocity of the barrier. Here we
use L = 32 and S/L = 1. (b): The shape of the force velocity curve changes as S/L
changes. Inset (b): The stall force increases as L0.2. For the inset, we use L = 64 and
d/δ = 2. Other simulation parameters are as in Table 2.1.

neglected any correlation between the binding sites. To calculate p0, we write down master

equations for average number Ni of filaments at a distance i from the corresponding binding

site. By definition, N0 is the average number of bound filaments and the contact probability

is p0 = N0/N. The time-evolution equations for Ni can be written as

dN0

dt
= U0N1 − {(N0 − 1)U0e−βFd + W0}N0 (2.11)

dN1

dt
= {(N0 − 1)U0e−βFd + W0}N0 + U0N2 − (N0U0e−βFd + W0 + U0)N1 (2.12)

dNi

dt
= (N0U0e−βFd + W0)Ni−1 + U0Ni+1 − (N0U0e−βFd + W0 + U0)Ni for i ≥ 2(2.13)

Here, we have assumed that the distance i between the filament tip and the binding site can

change only due to polymerization and depolymerization dynamics and the global move-

ment of the whole barrier due to polymerization of bound filaments. We have neglected

local height fluctuations occurring at the binding sites. As we show below, this approxima-

tion works reasonably well as long as filament density N/L is small and the time-scale of

barrier fluctuation is comparable or slower than the filament dynamics. For very fast motion

of the barrier, the height fluctuations at the binding sites become more frequent and this

assumption breaks down.

Solving the Eqs. 2.11, 2.12, 2.13 in steady state, we obtain the recursion relation

Ni+1 =

(
N0U0e−βFd + W0

U0

)i

N1; i = 1, 2, ... (2.14)
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our analytical prediction in Eq. 2.16 agree well with numerics. But as the barrier dynamics
becomes faster, deviations are observed. Here we have used L = 256, N = 32. Other
simulation parameters are same as in Table 2.1.

and

N1 =
(N0U0e−βFd + W0 −U0e−βFd)

U0
N0 (2.15)

Using the normalization relation, ∑ Ni = N we get

N0 =
N(U0 −W0)

U0 −U0e−βFd + NU0e−βFd (2.16)

and the contact probability has the form p0 = (U0−W0)
U0+(N−1)U0e−βFd . In Fig. 2.8 we compare this

result with simulation and find reasonable agreement. For small F, the contact probability is

approximately 1/N times the single-filament value, indicating that for small F, at most one

filament is in contact with the barrier.

For the local movement of the barrier, we need to calculate the probability to find hills and

valleys. As discussed above, for each segment between two successive binding sites, we use

our results for pv(i) and ph(i) for the single filament case (with the modification that i in this

case varies from 0 to (L/N − 1)). The velocity due to local fluctuations then becomes

V2 =
NdU0

L

[(
pv(0)(1 + p0) +

L/N−1

∑
i=1

pv(i)

)
e−βFd/L − (1− p0)ph(0)−

L/N−1

∑
i=1

ph(i)

]
(2.17)
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Figure 2.9: Force-velocity characteristic for multiple filaments. (a): Velocity shows very slow decay for
large F, when global movement can be neglected and V can be assumed to be governed by
local fluctuations alone. Here, we have used L = 512 and N = 32. Inset shows stall force
as a function of N for two different L values. We find stall force scales linearly with N and
remains independent of L. The continuous lines show analytical results. (b): Dependence
of force-velocity characteristic on the time-scale of barrier dynamics. In this case we find
same qualitative effect as in the single filament case. Here, we have used N = 16 and
L = 128. Other simulation parameters are as in Table 2.1.

The total velocity to leading order in 1/L and N/L becomes

V(F) =
d(U0 −W0)

1 + (N − 1)e−βFd N e−βFd +
dU0N

L

[
{pv(0)(1 + p0)− ph(0)(1− p0)}

+
L/N−1

∑
i=1

{
pv(i)

(
1− βFd

L

)
− ph(i)

}]
(2.18)

The stall force can be obtained by solving the above transcendental equation graphically

for V(F) = 0 and we compare the analytical stall force with our simulation results in Fig.

2.9(a), inset. We find that the stall force is independent of L in this case and scales with N,

which can be easily seen from Eq. 2.18. Since the value of the stall force is rather large in this

case, one can neglect global movement of the barrier close to the stalling regime. In addition,

p0 ≈ (1−W0/U0) for large force, and (pv(i)− ph(i)) is of order N/L. Using these in Eq. 2.18

it directly follows that the stall force for N filaments is independent of L and scales as N. We

also investigate the effect of barrier movement time-scale on the force-velocity dependence

[Fig. 2.9(b)] and we find qualitatively the same effect as in N = 1 case.

2.5 summary

In this chapter, we have studied force generation by a set of parallel actin filaments polymer-

izing against a barrier. A similar question has been addressed in many recent works where

the barrier was modelled as a rigid wall, which may have a thermal ratchet like motion [13,

14, 65, 66], or may be a passive obstacle which can move only when pushed by the filaments
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[17, 19, 23, 67–69]. In this chapter, we have considered a barrier with thermal fluctuations

but instead of modelling it as a rigid wall, we allow for its shape fluctuations. Interestingly,

we note that the qualitative shape of the F-V curve depends upon the relative time-scale

between the filament polymerization and barrier fluctuation. For slow barrier dynamics, the

curve has a convex shape and V shows an exponential decay for small and moderate F. But

for fast barrier dynamics when the local fluctuations become more important, there is signifi-

cant deviation from exponential dependence. In experimental and theoretical literatures also,

the qualitative nature of the force-velocity curve was found to depend on the details of the

experimental set-up or the modelling details as described in chapter 1 [7–10, 13, 14, 17, 19].

Certain theoretical models even showed a crossover from convex to concave force-velocity

curve, as some model parameters are varied [23, 30, 31]. A similar effect is seen in [30] also,

for a hybrid mesoscopic model, that combines the microscopic dynamics of semi-flexible

actin filaments and the viscous retrograde flow of actin network modelled as a macroscopic

gel. It was shown that the force-velocity curve can be both convex and concave, depending

on the characteristic time-scale of recoil of the gel-like network. It is remarkable that our

simple lattice gas model can reproduce this same effect, which underlines the importance of

the relative time-scale of obstacle and filament dynamics on the force generation mechanism.

Finally, our simple model shows that a non-rigid obstacle can produce remarkable effects

on force generation of parallel actin filaments. Our results underline the importance of the lo-

cal shape distortions and the independent dynamics of an obstacle. Many of our conclusions

are generic and can be expected to remain valid in systems where different descriptions of

a non-rigid obstacle are used. This also opens up the possibility of observing some of these

effects in experiment. For example, the change of shape of the barrier with external load

can be monitored in an experiment and our prediction that the height variation across the

barrier increases with load, can be explicitly verified. The key feature of a fluctuating barrier

is that one component of velocity comes from the local fluctuations and a direct measure-

ment of this component will surely give insights into the effects of barrier fluctuations. Our

model shows that for multiple filaments close to stalling regime, velocity is dominated by

these local movements and we also predict the scaling behavior of this velocity with filament

density and barrier size. It would be interesting to verify these predictions in experiments,

which would not only shed light on the qualitative nature of the local fluctuations but would

also provide insights about their quantitative behavior.
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3
A C T I N F I L A M E N T S G R O W I N G A G A I N S T A N E L A S T I C

M E M B R A N E : G R A D I E N T M O D E L

3.1 introduction

The plasma membrane is elastically deformable and has a role of central importance in the

motility process [34–37]. Extension of the plasma membrane that takes place during cell

motility and cell spreading depends strongly on membrane tension. The lamellopodial ex-

tension rate increases (decreases) when the membrane tension is decreased (increased) [39].

A flexible membrane enhances formation of filopodial protrusion and also allows merging of

smaller neighboring protrusions into a larger one [24]. Thus, elastic properties of the plasma

membrane have significant influence on actin polymerization and force generation process.

This gives rise to a more general theoretical question: What happens when a flexible, elas-

tically deformable obstacle is placed in the path of growing filaments? In this chapter, we

focus on this aspect, and study the force generation by actin filaments growing against an

elastically deformable barrier. The elastic energy of the membrane is taken to be propor-

tional to its contour length. Due to this elastic energy, the membrane tries to stay flat and

any deformation from this flat state costs energy. The filaments, on the other hand, push the

membrane and try to deform it. Thus, similar to Chapter 2, in this case also there is a com-

petition between the dynamics of the filaments and the barrier. We are interested to find out

how the membrane elasticity affects the growth of the filaments and how the polymerization

force exerted by the filaments affects the membrane deformations.

We find that the average membrane velocity shows a peak as a function of the membrane

tension µ. This is somewhat surprising since a larger membrane tension is expected to make

the polymerization process more costly and hence the growth process slower. We show that

the peak results from the competition between the polymerization force of the filaments and

the elastic force of the membrane. We also show that for small µ, the system does not have

a steady state and the total contour length of the membrane keeps increasing with time. For

large values of µ, the system reaches a steady state and the membrane velocity then decreases

with µ. The relative time-scale between the filament and the membrane dynamics plays very
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crucial role to determine the qualitative shape of the elasticity-velocity curve. Some of the

results discussed above have been published in [70].

This chapter is organized as follows. In section 3.2, we describe our model. Our results for

the single filament and multiple filaments are presented in sections 3.3 and 3.4, respectively,

and conclusions are in section 3.5.

3.2 description of the model

The present system consists of a set of N parallel filaments growing against an elastic mem-

brane as shown in Fig. 3.1. The membrane is modelled as a one dimensional lattice of length

L and lattice constant d. At each site i of the lattice a height hi is assigned. For a completely

flat membrane, when height of all sites are the same, the elastic energy is minimum. Presence

of a local height gradient stretches the membrane and costs energy.

The membrane is modelled as a solid-on-solid (SOS) surface without diffusion [71] and

the Hamiltonian has the form [25, 72–74]

H1 = µ
L

∑
i=1
|hi − hi+1| (3.1)

where µ is the elastic tension. In the absence of any filament, the membrane undergoes

equilibrium thermal fluctuations and the probability to obtain a particular height profile

{hi} follows Boltzmann measure with the above Hamiltonian. The sum in Eq. (3.1) is related

to the total contour length C of the particular height configuration of the membrane, such

that C = ∑L
i=1 |hi − hi+1| + Ld. Note that since the energy is linear in C, the energy cost

for increasing the contour length by an amount δ just depends on δ and is independent

of C. We call Eq. (3.1) the “gradient model". We assume periodic boundary condition on

the membrane, hL+1 = h1. This model was used in Ref. [72] to study thermally excited

protrusions in lipid membranes. In Ref. [73], the critical behavior of this model was analysed

using functional renormalization. In Ref. [25], this model was used to describe a membrane

and scaling properties of the height fluctuations were studied when the membrane was

driven by an advancing uncorrelated front representing the actin meshwork. In our next

chapter, we will also consider the case where the elastic energy of the barrier is proportional

to the square of local height gradients [26, 73].

The membrane can undergo independent thermal fluctuations in its local height [see Figs.

3.1(a) and 3.1(b)] and tends to minimize its elastic energy. In our lattice model, we assume

that as a result of these fluctuations, the local height can increase or decrease by a discrete
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amount δ. The rates of the dynamical moves that changes the energy by an amount 4E are

assumed to satisfy local detailed balance

R+

R−
= e−β∆E (3.2)

where R+ (R−) is the rate of those processes that increases (decreases) the energy by an

amount ∆E [Fig. 3.1a]. For ∆E = 0, the rate is taken to be unity [Fig. 3.1b]. Unlike the

previous case (Chapter 2), here the height of a membrane site can fluctuate without any

restriction, such that the height difference between two neighboring site may be greater than

unity or even zero. Thus, in this case, the contour length of the barrier is no more conserved.

The filaments are modelled in a similar way as in the Chapter 2. A (de)polymerization

event increases (decreases) the length of a filament by an amount d. Throughout this work,

we consider δ, the unit of barrier height fluctuation, and the monomer size d to be the

same. There are two types of filaments we need to consider: free filaments, which are not in

touch with the membrane, and bound filaments, whose tip is in contact with a membrane

site. The point of contact is called the binding site. For a free filament, the polymerization

process happens with a rate U0 and depolymerization happens with a rate W0 [see Fig.

3.1(d)]. However, for a bound filament, a polymerization process increases the height of the

binding site by an amount d [see Fig. 3.1(c)] and hence an energy cost ∆E is involved. Note

that the change in energy can be positive or negative, or even zero, depending on the local

height configuration around the binding site. For a positive (negative) energy cost, the bound

filament polymerization rate is taken to be U0R+ (U0R−), while for zero energy cost, the rate

is simply U0. The depolymerization rate of bound filament does not involve any membrane

movement and hence is equal to W0.

The elastic interaction of the membrane tends to keep the membrane flat and the bound

filaments generally grow by causing protrusions in the membrane. Although in principle,

it is possible that the local height configuration around the binding site is such that the

polymerization of bound filament actually releases some elastic energy, such configurations

are rare and most of the time elastic force acts against polymerization force. The elasticity-

velocity curve therefore plays a similar role as the force-velocity curve measured in Chapter

2 and in many other studies [7–10, 13, 23, 31, 62].

Note that the height of the membrane at the binding sites should be such that the mem-

brane always stays above the filament tips, and this puts some restrictions in height fluctua-

tions at the binding sites. Any height fluctuation that brings a binding site at a lower height

than the filament tip is forbidden. Everywhere else in the membrane, the height fluctuations

will occur in accordance with Eq. (3.2).

We perform simulations using kinetic Monte Carlo technique as discussed at the end of

model section of chapter 2. We start with an initial configuration where all N filaments have
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unit length, containing one monomer each and a flat membrane. The system undergoes time

evolution and after a large number of Monte Carlo steps, we perform our measurements.

(d)

U0

W0

(c)

U0 R+

(a)

R+

R-

(b)

1

1

Figure 3.1: Schematic representation of gradient model. The square blocks show actin monomers,
which join together to form rod-like filaments. The thick solid line represents the shape of
the elastic membrane. (a): A bulk site of the membrane thermally fluctuates and changes
its height by an amount d, which in turn changes the membrane contour length by 2d. The
forward process increases the energy and occur with rate R+ while the reverse process
decreases the energy and happens with rate R−. (b): A bulk site of the membrane changes
its height by an amount d but the energy remains same and thus the movement happens
with rate unity. (c): A bound filament pushes the binding site by an amount d that costs
energy and occurs with rate U0R+. (d): A free filament polymerizes (depolymerizes) with
rate U0 (W0).

3.3 results for single filament

In the present model, since the elastic energy of the membrane is proportional to its contour

length, the change in local height by an amount d that causes C to change by 2d, brings about

a change 2µd in the energy. In our simulation, we choose R+ = e−βµd and R− = eβµd. The

bound filament polymerization that leads to an increase (decrease) in energy happens with

rate U0R+ (U0R−). All other movements of the membrane where energy does not change,

occur with rate unity. We first present the results for S/L = 1.
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3.3.1 Peak in the elasticity-velocity curve

The polymerization of the bound filament pushes the membrane upward and gives rise

to a nonzero membrane velocity, which is measured as the rate of change of the average

membrane height in the long time limit. We measure the velocity V as a function of µ

and present our data in Fig. 3.2(a), for S/L = 1. We find that V shows a nonmonotonic

dependence on µ: Starting from a nonzero value for µ = 0, it increases with µ for small µ

values, and after reaching a peak at a certain µ∗, the velocity decreases again. Presence of

a peak is somewhat surprising, since increasing µ ought to make it more difficult for the

filament to push against the membrane. We also find that V scales as 1/L. In the remaining

part of this sub-section, we explain different aspects of this data in detail.
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Figure 3.2: µ−V curve for a single filament. (a): The average velocity of the membrane as a function
of µ shows a peak at µ∗. While V ∼ 1/L, the peak-position µ∗ does not depend on L. The
solid triangle on the y-axis marks V0 = d

L (U0 −W0), which is the expected value of V at
µ = 0. Inset: For large µ, the membrane velocity decreases exponentially with a decay
constant ' 0.67, which is close to the value of βd. Here, we have used L = 64. (b): The
variation of average velocity of the binding site (Vbind) and the average velocity of a bulk
site (Vbulk) with µ, shows that Vbind decreases monotonically with µ while Vbulk increases
with µ for µ < µ∗. For µ > µ∗, these two velocities are equal. Here we have used L = 16.
For all the above plots, we have used S/L = 1. Other simulation parameters are as in
Table 2.1.

First we consider µ = 0. In this case, there is no energy cost involved in stretching the

membrane, and thus the single filament present in the system polymerizes with rate U0,

irrespective of whether it is free or bound to the membrane. The velocity of the barrier in

this case turns out to be V0 = d(U0 −W0)/L. We briefly present the calculation below.

Let p0 be the probability that the filament is in the bound state. The height at the binding

site can (a) increase due to bound filament polymerization that happens with an effective rate

U0 p0, (b) increase due to thermal fluctuation that happens with rate 1, or (c) decrease due

to thermal fluctuation, provided the filament is not in a bound state (since the membrane

always needs to stay above the filament tip) and this process happens with effective rate
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(1− p0). It follows therefore that the average velocity of the membrane can be written as

V0 = V(µ = 0) =
d
L

p0(U0 + 1), where the pre-factor d/L is the change in average height

of the membrane due to d-unit change in the binding site height. Here, we have assumed

S/L = 1. The contact probability p0 can be calculated by noting that the height difference

between the filament tip and the binding site performs a biased random walk, with the

restriction that it cannot cross the origin and become negative [62].

Let pi be the probability that there is a gap of size i between the binding site and the

filament tip. Clearly, the contact probability p0 corresponds to i = 0. The master equation for

pi with µ < µ∗ can be written as

dpi

dt
= (U0 +

S
L

eβµd)pi+1 + (W0 +
S
L

e−βµd)pi−1 − (U0 +
S
L

eβµd +
S
L

e−βµd + W0)pi; f or i > 0

and
dp0

dt
= (U0 +

S
L

eβµd)p1 − (
S
L

e−βµd + W0)p0; f or i = 0

where all symbols have their usual meaning. Here, we have used the fact that for µ < µ∗,

the binding site moves faster than the rest of the system and hence has a larger height than

all bulk sites. Although the system is not in steady state for µ < µ∗, the probability pi still

reaches a stationary value. In steady state one has the recursion relation,

pi =
( S

L e−βµd + W0
S
L eβµd + U0

)i
p0

which by applying normalization condition gives the expression for the contact probability,

p0 =
U0 −W0 +

S
L eβµd − SL e−βµd

S
L eβµd + U0

; f or µ < µ∗. (3.3)

Alternatively, the binding site being driven by the growing filament, its velocity must be

same as the growth velocity of the filament. The later quantity is simply {U0 p0e−βµd +U0(1−
p0)−W0}, while the velocity of the binding site has the form {U0 p0e−βµd + S

L e−βµd − SL (1−
p0)eβµd}. Equating these two gives the same expression for p0 as in Eq. (3.3).

For µ = 0 and S/L = 1, the contact probability p0 =
U0 −W0

1 + U0
. Using this value, we have

V0 = d
L (U0 −W0). Comparison of this value with our simulation data in Fig. 3.2(a) show

good agreement.

Next, we explain the presence of the peak in the µ−V curve. Note that for µ = 0 the sys-

tem has no steady state and the filament pushes the binding site upward, while other (L− 1)

sites of the system which are not coupled (µ being zero), undergo equilibrium fluctuations
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and show no net velocity. Consequently, the height difference between the binding site and

the bulk sites and hence the contour length C keeps increasing with time. For nonzero µ

there is an energy cost associated with stretching the membrane. This elastic force tries to

reduce C and the bulk sites feel an upward pull towards the binding site. The strength of

this pull increases as µ increases and this explains why the membrane velocity increases

with µ. However, for small values of µ, this elastic force is not strong enough to counter the

polymerization force exerted by the filaments, and the bulk sites are not able to catch up

with the binding site, which still moves at a larger velocity and C keeps increasing with time.

Finally, when µ reaches a critical value µ∗, such that the elastic force exactly balances the

polymerization force, the average velocity of the bulk sites becomes equal to that of the bind-

ing site. As µ is increased further, the elastic force becomes stronger than the polymerization

force and it becomes increasingly difficult for the filament to push the binding site. However,

as soon as a successful polymerization takes place, and the binding site height increases, the

bulk sites quickly catch up because the elastic energy associated with a nonflat profile is high

for µ values in this range. The whole membrane now moves with the same velocity and C
stabilizes. The membrane velocity in this case is dominated by the polymerization events at

the binding site, the rate of which is U0 exp(−βµd). Thus the membrane velocity decreases

exponentially with µ in this range [see data in Fig. 3.2(a), inset].

To verify the above mechanism, we measure the velocity of the binding site and the bulk

sites separately and plot the data in Fig. 3.2(b). As argued above, we find that for small

µ, the binding site velocity is higher than the bulk site and these two velocities become

equal for µ ≥ µ∗. The difference between the binding site and the bulk site velocities can

be alternatively measured by <C(t)−C(0)>
t for large t, where C(0) is the initial contour length

and C(t) is the length of the contour after evolving the system upto t MC steps. Our plot

in Fig. 3.3(b) shows that for µ < µ∗, this quantity decreases linearly with µ and becomes

zero at µ∗. We also measure the ratio λ =< (|hb+1 − hb|+ |hb − hb−1|+ 2d)/C >, averaged

over different configurations. Here, b denotes the binding site. λ gives the fraction of contour

length that is contained between the binding site and its two neighbors. For µ < µ∗, when

the binding site moves faster than the rest of the membrane, for large times, this fraction is

very close to 1, since the length of the rest of the membrane becomes negligible compared

to the growing separation between the binding site and its neighbors. Our data in Fig. 3.3(a)

show that λ stays at 1 for small µ and then shows a sharp fall at µ = µ∗. For µ � µ∗,

when the polymerization is almost impossible and the membrane velocity is close to zero,

the membrane is flat and λ then becomes 2/L. In this limit, the membrane behaves like a

rigid barrier, which was studied in Refs. [13, 17–19, 23, 31]. We find that after the sharp jump

at µ = µ∗, the ratio λ decreases exponentially with µ to the asymptotic value 2/L [Fig. 3.3(a),

inset]. Note that both for small and large µ, the binding site is the only site that is being

pushed by the filament and the dynamics of bulk sites still follow local detailed balance. The
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overall velocity of the membrane is thus generated by the drive present at the single binding

site and this is the reason V scales inversely with the system size L.
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Figure 3.3: The membrane contour length keeps growing for µ < µ∗ and stabilizes for µ > µ∗. (a): The
ratio λ = 1 for µ < µ∗ and decreases sharply at µ∗ to its asymptotic value 2/L for large µ.
Inset: The saturation of λ at large µ happens exponentially. (b): The quantity <C(t)−C(0)>

t ,
for large t, decreases with µ and becomes zero above µ∗. Inset: Variation of contour length
with time at µ∗ = 1.748pN. We see that after large enough time, C(t) grows with time as
t0.5 with a diffusion constant D = 37.41± 7.19nm2/s. The analytically calculated value of
D = 41.352nm2/s which is close to the numerical value. Here we use L = 64. For both
panels S/L = 1. Other simulation parameters are as in Table 2.1.

3.3.2 Absence of steady state for µ < µ∗

For µ < µ∗, when the binding site and bulk site velocities are different, and C keeps increas-

ing with time, the system does not have a steady state. This seems somewhat surprising and

in this subsection we discuss this issue in detail.

Let us define z = 2hb − hb+1 − hb−1. Our data in Fig. 3.4(a) show that for µ < µ∗, the sign

of z is always positive and even for µ > µ∗, the probability to find negative z is negligible.

This is expected, since for small µ, the binding site always stays above its neighbors, and for

large µ, when the membrane is flat, the binding site is most of the time at the same level with

its neighbors, but does not typically fall below that level. We show below that z performs a

biased random walker with a reflecting boundary condition at the origin.

First note that z can increase either due to increase of hb (from bound filament polymer-

ization or thermal fluctuation at the binding site) which happens with rate e−βµd(p0U0 + 1),

or due to decrease of hb±1, which happens with rate 1. This is because our data in Fig. 3.4(b)

show that the sites (b± 1) almost always have one neighbor (site b± 2) at a lower height, and

another neighbor (site b) at a higher height. From Eq. (3.1) it then follows that the height at

the sites (b± 1) can increase or decrease without any energy cost and rate of such processes

is taken to be 1 [see, for example, Fig. 3.1(b)]. The value of z can decrease because of decrease
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in hb which releases elastic energy and happens with rate eβµd(1− p0), or because of increase

of hb±1, which again happens with rate unity, as explained above. Let us define P(z, t) as the

probability for z at time t. Then the change in P(z, t) in a small time 4t can be written as,

P(z, t +4t)− P(z, t) = 4t[(1− p0)eβµdP(z + 2d, t) + 2P(z + d, t) + 2P(z− d, t)

+(1 + U0 p0)e−βµdP(z− 2d, t)− {(1− p0)eβµd + 4 + (1 + U0 p0)e−βµd}P(z, t)] (3.4)

Here, we have considered z > 0 [supported by data in Fig. 3.4(a)] and put a reflecting

boundary at the origin z = 0, such that z can never be negative. In the continuum limit, Eq.

3.4 becomes a Fokker-Planck equation for a biased random walker with drift and diffusion

given by, respectively, v = 2d{(1 + U0 p0)e−βµd − (1− p0)eβµd} and D = 2d2{(1− p0)eβµd +

(1 + U0 p0)e−βµd + 1}.
It can be easily seen that for small µ, the bias v is positive while for large µ, the bias

v is negative. At µ = µ∗, v becomes zero and the system shows unbiased diffusion with

diffusivity D. The value of µ∗ can be obtained by equating v to zero and using the expression

for p0 from Eq. 3.3 which gives the resulting equation

W0e3βµ∗d −U0e2βµ∗d − (U2
0 −U0W0 + U0)eβµ∗d + U0 = 0. (3.5)

Numerical solution of the above equation gives only one physical solution for µ∗. We find

µ∗ = 1.81pN, which is close to the value 1.748± 0.004pN observed in simulations.

Due to the reflecting boundary condition at the origin, this implies that for µ < µ∗, the

system does not reach a steady state, and 〈z〉 increases linearly with time, while for µ > µ∗,

there exists a steady state and 〈z〉 reaches a time-independent value. At µ = µ∗, we have an

unbiased random walker with reflecting boundary at the origin, for which there is no steady

state either, but 〈z〉 in this case grows diffusively with time with a diffusion constant that

matches our analytical expression given above [see Fig. 3.3(b), inset].

3.3.3 Faster membrane dynamics lowers µ∗

So far we have considered the case for S = L membrane updates in one MC step. What

happens when the membrane dynamics is faster or slower than this? Apart from the binding

site, all the other (L− 1) bulk sites are being driven by only the elastic interaction. For large

S , when the bulk sites are updated at a higher rate, the effect of the elastic interaction is felt

more strongly. As a result, the point of balance µ∗, where the elastic force and polymerization

force become equal, now shifts towards a smaller value of µ. More specifically, for small but

nonzero µ, when the bulk sites experience an upward bias towards the binding site, their

total displacement in the upward direction per MC step increases, as S increases. Thus the
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Figure 3.4: Height gradient around the binding site. (a): The probability that z ≥ 0 as a function of µ.
We see that the probability is exactly one for µ < µ∗ and even for µ > µ∗, it is very close
to one. (b): Here we show the probability that hb±1 ≥ hb±2 as a function of µ. The red
triangles are for prob(hb+1 ≥ hb+2) while the blue circles are for prob(hb−1 ≥ hb−2). These
probabilities are also close to one for entire range of µ. Here, L = 64 and S/L = 1. Other
simulation parameters are as in Table 2.1.

bulk sites are able to catch up with the binding site at a smaller value of µ. In other words, as

S increases, µ∗ decreases. In Fig. 3.5(a) we plot µ−V data for different S/L values, and find

that the peak of the curve shifts towards left as S/L increases. For S/L >> 1, the value of µ∗

becomes infinitesimally small and for any finite µ, the curve looks monotonic. In the inset of

Fig. 3.5(a) we show the variation of µ∗ with S/L. Note, however, that the dependence is not

very strong and µ∗ deceases logarithmically slowly with S/L. We see that over two decades

of change of S , the value of µ∗ changes only by a factor of half. However, the membrane

velocity measured at µ∗ shows a more strong dependence on S/L and grows as a power law

with an exponent ' 0.87 [Fig. 3.5(b)]. We can generalize our calculation in the last subsection

for arbitrary values of S and obtain µ∗ as the only one physical solution of the equation

S
L

(
W0e3βµ∗d −U0e2βµ∗d −U0eβµ∗d + U0

)
− (U2

0 −U0W0)eβµ∗d = 0. (3.6)

The analytical result shown by the continuous line in the inset of Fig. 3.5(a) shows good

agreement with numerical data over a wide range of S/L.

Note that our calculation for the contact probability p0 presented in Eq. 3.3 shows that for

small µ and large S/L, the contact probability is very small. This means that the filament

is unbound most of the time and grows like a free filament with a net growth rate d(U0 −
W0), which is independent of µ. Since we measure the membrane velocity as the average

displacement of the membrane per Monte Carlo step and we define our Monte Carlo step

such that there are S surface updates and one filament update, our data in Fig. 3.6(a) show

that the membrane velocity also approaches this limit as S/L becomes large. The µ − V

curve in this case therefore becomes flat for small µ and then decreases for large µ, giving
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Figure 3.5: Peak position and peak height of µ−V curve depends on S/L. (a): Scaled V as a function
of µ for different S/L values. The scaling factor Vmax has been used such that the data for
different S/L values can be compared. In this plot the symbol ◦ correspond to S/L = 2−2

(Vmax ' 5.84× 10−2nm/s), the � correspond to S/L = 2−1 (Vmax ' 5.84× 10−2nm/s), the
4 correspond to S/L = 1 (Vmax ' 7.89× 10−2nm/s) and the ∇ correspond to S/L = 26

(Vmax ' 2.23nm/s). For smaller values of S/L, the curve is monotonic as the velocity is
mostly determined by the binding site. As S/L increases, the µ−V curve develops a peak
at µ∗. Inset: µ∗ decreases with S/L. The discrete points from simulations match well
with continuous line from Eq. (3.6). We use L = 64 here. (b): The membrane velocity at
µ∗ plotted against S/L shows a power law increase. The solid line represents a function
∼ x0.87 and goes parallel to our numerical data points. Here we have used L = 64. Other
simulation parameters are as in Table 2.1.

rise to a concave curve, as shown in Fig. 3.6(a). Thus the µ− V curve can change its shape

from convex to concave depending on the choice of the relative time scale S/L [30, 31, 62].

In the limit of very large S/L, when the membrane fluctuations occur much more rapidly

than the filament polymerization, the membrane reaches a thermal equilibrium between two

filament movements. The partition function for the system can be calculated in this case and

the average contour length 〈C〉 of the membrane can be obtained from there, which has the

form 〈C〉 = Ld/(1− e−βµd). In Fig. 3.6(b) we compare it with numerics and find reasonably

good agreement for large S/L.

3.3.4 For large µ the membrane behaves as a rigid obstacle

When µ is very large, the membrane remains flat most of the time. Whenever there is a

filament polymerization, the height of the binding site increases, but due to high elastic

energy cost associated with such a configuration, the bulk sites quickly catch up and the

membrane is flat again. We find that the membrane behaves like a perfectly rigid barrier in

this case. Let pi be the probability to find a gap of length i between the filament tip and

the binding site. For a rigid barrier without any independent movement, this gap can only

increase or decrease due to filament polymerization or depolymerization. In Sec. 2.3.1 of

Chapter 2, we consider such a case, where we ignore any change in pi due to the height

40



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10

V
/V

m
a
x

µ (pN)

(a) S/L=2
-3

S/L=2
2

S/L=2
9

S/L=2
12

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.5 1 1.5 2 2.5 3 3.5 4

<
C

>
/L

d

µ (pN)

(b) S/L=2
3

S/L=2
6

S/L=2
9

S/L=2
10

Analytical

Figure 3.6: Variation of membrane velocity and contour length against µ for different values of S/L.
(a): The µ−V curve changes from convex to concave as S/L is increased. For S/L << 1,
the curve is convex while for S/L >> 1, it becomes concave. Here, we have scaled
V by Vmax such that we can compare them in the same scale. The values of Vmax are
4.67× 10−1nm/s, 4.67× 10−1, nm/s, 3.73nm/s, and 3.73nm/s, respectively, in the increas-
ing order of S/L. Here, we have used L = 8. (b): Average contour length of the membrane
scaled by Ld as a function of µ for different values of S/L. The continuous line is from
analytical calculation in the equilibrium limit, which matches with simulation for very
high S/L. Other simulation parameters are as in Table 2.1.

fluctuations and pi changes only due to the filament dynamics. Thus, in a similar way, we

have p0 = 1−W0/U0 ' 1/2 (Using the value of U0 and W0 from Table 2.1).

In Fig. 3.7(a), we show the variation of p0 with µ for different S/L and find that for large

µ, the contact probability indeed saturates to 1/2, the rigid barrier limit. Smaller the value

of S/L, faster is the saturation. For small µ, the contact probability can be calculated analyti-

cally (see Eq. 3.3) and in Fig. 3.7(a) this has been shown by solid lines, which agree well with

the simulations. Our calculation remains valid only for µ < µ∗ and hence the comparison

has been done only in this regime. µ∗ becomes too small for very large S/L, and hence

not marked in this plot. In the case for S/L << 1, when the membrane dynamics is very

slow, the thermal fluctuations of the membrane can be neglected and the contact probability

is essentially controlled by the polymerization and depolymerization of the filament. Thus

we find that the contact probability approaches 1/2 even for µ < µ∗ in this case [shown

by red triangles in Fig. 3.7(a)]. However, the system is not in steady state here and the con-

tour length of the membrane keeps increasing with time. In Fig. 3.7(b) we plot the ratio

λ =< (|hb+1 − hb|+ |hb − hb−1|+ 2d)/C > and show this explicitly.

3.4 results for multiple filaments

In the previous section, we have considered the case of single filament. In this section, we

will present a brief discussion on multiple filaments. Let us define the filament density as ρ =

N/L. We find for ρ � 1, and for uniform distribution for the binding sites, the qualitative
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Figure 3.7: For µ >> 1, the membrane behaves as a rigid obstacle. (a): The contact probability p0 for
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µ, the value of λ is unity, which means that the contour length of the membrane diverges
with time. For high enough value of µ, λ saturates to 2/L. We use L = 64 for both the
plots. Other simulation parameters are as in Table 2.1.

behavior is same as that for single filament. In Fig. 3.8(a), we show the µ − V curve for

multiple filaments for small ρ. Since the membrane velocity results from the polymerization

force exerted at the binding sites (motion at all other sites follows local detailed balance, as

mentioned in Sec. 3.2), our data show that V scales as ρ. The non-monotonicity of the µ−V

curve means that even for multiple filaments, the system fails to reach a steady state for

small µ and the membrane contour length C keeps increasing with time. We have checked

that (data not shown) at µ = µ∗ the contour length grows diffusively with time and for

µ > µ∗ system reaches a steady state when C has a finite value. Figure 3.8(b) shows the

µ − V curve for different values of S/L. We note that for S/L << 1, the curve is convex

while for S/L >> 1, it becomes concave.

As ρ increases, the elasticity of the membrane induces an effective interaction between the

filaments and the single filament picture does not remain valid any more. Our data in Fig.

3.9 show that V ∼ ρ scaling is lost and µ∗ now depends on ρ. For large ρ, most of the sites

are binding sites and are driven by the filaments. Due to elastic interaction, the remaining

few bulk sites feel an upward pull and are able to catch up with the binding sites at smaller

µ values. Thus µ∗ decreases with ρ for large ρ. When ρ = 1, the system will reach steady

state for all values of µ but for ρ < 1, there will always be a nonzero µ∗ below which the

system does not have a steady state.

In the above discussion, we have assumed that the binding sites are distributed uniformly

throughout the membrane. If we consider an inhomogeneous distribution of binding sites,

then for small µ, the region of the membrane where the density of binding sites is high,
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For S/L << 1, the curve is convex while for S/L >> 1, the curve becomes concave. The
values of Vmax are 0.467nm/s, 3.71nm/s, 3.74nm/s and 3.75nm/s for S/L = 2−2, 25, 27,
and 210, respectively. Here we have used N = 4 and L = 32. Other simulation parameters
are as in Table 2.1.
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Figure 3.9: Results for multiple filaments with high filament density. In the main plot, we show µ−V
curve for multiple filaments for ρ ∼ 1. We note that V does not scale with ρ. The peak
position µ∗ decreases with ρ. The inset shows the variation of µ∗ with ρ. We note that for
ρ << 1, the value of µ∗ remains constant and then decreases with ρ for high value of ρ.
We use S/L = 1 here. Other simulation parameters are as in Table 2.1.

will have a large local velocity since it is being driven by a large number of filaments. On

the other hand, the part of the membrane where binding sites have a low density, will have

a much smaller local velocity. In order for the whole system to reach a steady state, the

velocity should be same everywhere on the membrane. This means that the polymerization

force present in the fastest part of the membrane has to be smaller than the elastic interaction

which pushes the slowest part of the membrane where binding site density is lowest. A very

large value of µ is required to achieve this balance. Thus µ∗ becomes very large in the case

43



of inhomogeneous distribution of binding sites. We have verified this in our simulations. We

distribute the filaments inhomogeneously such that a section of the membrane have filament

density ρ = 1/2 (denser part) while another section of the membrane have filament density

ρ = 1/8 (rarer part). We note that for the denser part, the average velocity of a bulk site

and a binding site becomes equal at smaller value of µ(= 0.5pN), but the rarer part of the

membrane still moves with the velocity smaller than that of the denser part. Thus, the system

is not in the steady state. The system reaches steady state at µ∗ = 5.80± 0.04pN, where the

velocity of all the sites become equal. This value is much higher than the homogeneously

distributed case (see Fig. 3.10).
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Figure 3.10: Inhomogeneous distribution of filaments. For the denser part of the membrane, ρ = 1/2
while for the rarer part, ρ = 1/8. We note that for the denser part, Vbind = Vbulk at
µ = 0.5pN, while the rarer part still moves with smaller velocity. The velocity of all the
sites become equal at µ∗ = 5.80± 0.04pN, which is much higher than the homogeneous
distribution of filaments. We use here N = 20, L = 64 and S/L = 1. Other simulation
parameters are as in Table 2.1.

3.5 conclusions

In summary, we study in this chapter, the force generation mechanism by a set of parallel

filaments growing against an elastic membrane. We describe the elastic membrane using a

one dimensional Solid-On-Solid (SOS) model [25, 72–74]. The elastic membrane tends to stay

flat and any distortion from this flat state costs energy. We find that the polymerization force

wins over the elastic force of the membrane for low values of the membrane tension and

the system fails to reach a steady state. This gives rise to a nonmonotonic dependence of

membrane velocity on its elasticity. Our detailed numerical simulations of various different

quantities, accompanied by analytical calculations and simple scaling arguments provide a

comprehensive picture of the behavior of the system in the long time limit. We also highlight

the importance of the relative time scale between the dynamics of the membrane and the
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filaments to determine the qualitative nature of the dependence of membrane velocity on

elasticity. While for fast membrane dynamics, the velocity is a concave function of membrane

elasticity, for slow membrane dynamics a convex dependence is observed.

Throughout this chapter, we have assumed the membrane to be homogeneous with same

elasticity along the whole membrane. However, in many physical systems there can also be

tension gradient along the membrane [75, 76]. Our results for the simple model will pave

way for studying more complex models where above mentioned effects are included.
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4
A C T I N F I L A M E N T S G R O W I N G A G A I N S T A N E L A S T I C

M E M B R A N E : G A U S S I A N M O D E L

4.1 introduction

In our last chapter, we have studied the force generation by actin filaments growing against

an elastic membrane, where we consider the elastic energy to be proportional to the contour

length of the membrane [25, 72, 74]. In literatures, another form of elastic interaction is

widely used, where the elastic energy is taken to be proportional to the sum of squares of

local height gradients [26, 73]. In the present chapter, we would like to study this case. We

call it the “Gaussian model". We are interested to find out how the membrane elasticity in

this case affects the growth of the filaments and how the polymerization force exerted by the

filaments affects the membrane deformations.

In the present case, we find that the membrane velocity decreases monotonically with

the membrane elastic constant ν and steady state is reached for all nonzero values of ν,

which is different from the gradient model, where we have the absence of steady state for

small elasticity. In the present model also, we note that the relative time-scale between the

membrane dynamics and the filament dynamics is crucial to determine the qualitative shape

of the elasticity-velocity curve. Some of the results discussed above have been published in

[70].

4.2 description of the model

The description of the system is same as the gradient model. The system consists of a set of

N parallel filaments growing against an elastic membrane as shown in Fig. 3.1. The form of

the Hamiltonian in this case is [26, 73]

H2 = ν
L

∑
i=1

(hi − hi+1)
2 (4.1)
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where ν denotes the elastic constant. In this case, energy depends on the square of the local

height gradients, and hence the energy cost to extend the membrane by a certain amount

also depends on the contour length C. For large C values, the energy cost also goes up, as

expected for an elastic body. We refer this model as "Gaussian model". The dynamics of the

system is same as described in the case of gradient model (see Sec. 3.2 of Chapter 3).

In the present model, if the height of the j-th site, hj changes to hj ± d, then the change in

energy, ∆E = 2dν[d± (2hj − hj+1 − hj−1)], depends on the local height configuration around

the j-th site. This is different from the gradient model, where ∆E is constant. Following

the local detailed balance [see Eq. (3.2)] we use in our simulations R+ = e−β∆E, and R− = 1,

while all other movements of the membrane where the energy of the barrier does not change,

occur with rate unity.

4.3 results for single filament

In this section, we present our results for the single filament and then in the next section, we

discuss the case of multiple filaments.

4.3.1 Membrane velocity decreases with ν

For ν = 0, there is no difference between gradient model and Gaussian model (Eqs. 3.1

and 4.1). Therefore, as derived in Sec. 3.3.1, the membrane velocity at ν = 0 is given by

V0 = d(U0 −W0)/L. The membrane contour length C keeps increasing with time and the

system does not have a steady state. However, as soon as ν is nonzero, any polymerization

event or independent thermal fluctuation that causes an increase in C, has an energy cost

which is higher as C gets larger. Thus the membrane can not stretch indefinitely and for all

ν > 0 the system reaches a steady state. Our data in Fig. 4.1(a) show that for ν > 0, the

membrane velocity V decreases as ν increases. For large ν, the decay is exponential (Fig.

4.1(a), top inset) and we also find V ∼ 1/L scaling, as seen earlier in Fig. 3.2 for the gradient

model.

Note that there is a discontinuity of the ν− V curve at ν = 0 (see Fig. 4.1(a), main plot).

The data in Fig. 4.1(a), bottom inset show that as ν → 0, the velocity saturates to a value,

which is different from the value V0 = d(U0 −W0)/L at ν = 0. This is because at ν = 0,

only the binding site of the membrane has nonzero velocity and the bulk sites have zero

velocity. But as soon as ν 6= 0, the system has a steady state and the bulk sites must move

with the same velocity as the binding site. This sharp jump in the bulk sites velocity causes

the discontinuity in the ν−V curve.
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Figure 4.1: Variation of velocity and contour length with ν for Gaussian model. (a): The ν− V curve
for single filament shows 1/L scaling. The curve is monotonic for all ν 6= 0. Top inset: The
velocity falls exponentially with decay constant ' 3.13, which is close to 2βd2. Bottom
inset: In the limit of very small ν, the velocity saturates to a value ∼ 0.074nm/sec, that
is distinctly different from V0 = 0.058nm/s at ν = 0. We use L = 64 for the insets and
S/L = 1 for all the plots. (b): Average contour length of the membrane scaled by d as
a function of ν. For very high value of ν, < C > becomes equal to the system size Ld.
Top inset: Contour length decreases exponentially for large µ with a decay constant ' 3.2
which is again close to 2βd2. Bottom inset: For very small ν, contour length falls off with
ν as a power law with an exponent ' 0.9. For all the above plots, we use L = 64 and
S/L = 1. Other simulation parameters are as in Table 2.1.

In Fig. 4.1(b) we plot the steady state average contour length 〈C〉 as a function of ν. We find

that (top inset) 〈C〉 decreases exponentially for large ν, as found in the gradient model (also

see Fig. 3.3). For very small ν, our data (Fig. 4.1(b), bottom inset) show that 〈C〉 decreases as

a power law with an exponent ' 0.9. The power law decay can be explained as follows.

For very small ν, the local height gradient of the membrane decreases sharply as a function

of the distance from the binding site and we have yb > yb+1 > yb+2..., where yi = hi −
hi+1 and b denotes the binding site. The bound filament polymerization and thermal height

fluctuations at the binding site may change hb which actually changes C. It is easy to see that

the rate of these processes that increase hb is (1 + U0 p0)e−2βνd2(2yb+1) and that decrease hb is

(1− p0). The height fluctuations of the other sites will not change C. In the steady state, C
is time-stationary, the increasing and decreasing rates must be equal, from which it follows

that yb ∼ 1/ν. Moreover, in the steady state, the velocity of all membrane sites are equal.

The velocity at the binding site is given by {(1 + U0 p0)e−2βνd2(2yb+1) − (1− p0)}, and that

at the neighboring site (b + 1) is {1− e−2βνd2(yb−yb+1+1)}. Once we equate them, it follows

that yb+1 ∼ 1/ν for small ν. Equating the velocity of the sites (b + 1) and (b + 2), it can be

similarly shown that yb+2 ∼ 1/ν, and thus for any site i, yi ∼ 1/ν holds. Thus the quantity

(< C > −Ld = ∑i |yi|) shows an 1/ν dependence. Our numerical data yields power law

exponent 0.9 which is close to this prediction.
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4.3.2 Faster membrane dynamics yields a concave ν−V curve

The relative time-scale between the membrane and filament dynamics is an important pa-

rameter for the Gaussian model also. The contact probability p0 that is crucial to determine

the interaction between the filament and the membrane depends strongly on whether the

membrane dynamics is faster or slower than the filament dynamics. For very large ν, it is

expected that p0 ' 1/2 since the membrane behaves like a rigid barrier in this limit (also

see our discussion in Sec. 3.3.4). However, when ν is small, our data in Fig. 4.2(a) show that

the variation of p0 with ν is qualitatively determined by the value of S/L. For S/L� 1, the

thermal fluctuations of the membrane happen so fast that the contact with the filament tip is

lost most of the time and p0 is small. From this small value, p0 increases to 1/2 as ν becomes

large. For S/L � 1, the membrane fluctuations become almost negligible and the contact

probability is controlled by the (de)polymerization of the (bound) free filament which does

not depend on ν. Our data for small S/L support this [Fig. 4.2(a)].
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Figure 4.2: Contact probability and velocity as a function of ν in a Gaussian model for different values
of S/L. (a): For S/L << 1, p0 does not show much variation and its value remains close
to 1/2. For S/L ∼ 1, in the small ν region, the value of p0 is higher than 1/2 which then
saturates to its rigid barrier limit for high ν. For S/L >> 1, p0 starts with very small
value and then increases with ν, then saturates to 1/2. Higher the value of S/L, slower
the tendency to reach 1/2. We use L = 8 here. (b): The ν−V curve changes from convex
to concave as S/L is increased. The values of Vmax are 0.475nm/s, 3.50nm/s, 3.72nm/s,
and 3.73nm/s for S/L = 1, 23, 29 and 212 respectively. Other simulation parameters are as
in Table 2.1.

The behavior of p0 has a direct influence on the ν−V curve and we show in Fig. 4.2(b) that

the curve becomes concave from convex as S/L is increased. When S/L� 1, the filament is

most of the time unbound for small ν and hence the membrane velocity remains constant at

d(U0 −W0)/L, same as that for a free filament. For large ν, when p0 starts increasing again,

V decreases. The ν−V curve is concave in this case. On the other hand, for very small S/L,

the value of p0 is no longer negligible and it remains nearly 1/2 throughout the region. In
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this case, due to the increase in ν, the velocity starts decreasing even in the small ν range,

which yields a convex curve.

In the limit of very fast membrane dynamics, we can neglect the filament dynamics and

assuming equilibrium we can calculate the average elastic energy of the membrane, as done

in the previous chapter for gradient model [Fig. 3.6(b)]. We note that for the present case

also, the analytical calculation shows good agreement with our numerics for very large S/L

(see Fig. 4.3).
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Figure 4.3: Average energy of the membrane scaled by νd2 as a function of ν for different values of
S/L. The continuous line is from analytical calculation in the equilibrium limit, which
matches with simulation for very high S/L. Other simulation parameters are as in Table
2.1.

4.4 results for multiple filaments

The multiple filaments case is qualitatively the same as the single filament case. For low

density of filaments (N/L = ρ � 1), we plot the ν− V curve in Fig. 4.4(a). We find that V

decreases monotonically with ν for nonzero ν and scales as ρ. The decay of V is exponential

for large ν with a decay constant which is same as that in the single filament case. In the

limit of large ν, the membrane behaves like a rigid barrier and apart from an overall scaling

of V by a factor ρ, its dependence on ν remains same for single or multiple filaments. The

qualitative shape of ν − V curve is also found to change with S/L, similar to the single

filament case [Fig. 4.4(b)].

One interesting observation that can be made for the multiple filaments case is the merging

of membrane protrusions. We study merging of membrane protrusion within our simple

model by monitoring the contour length l of the membrane between two binding sites at

a distance k apart. When the protrusions created at the two binding sites merge with each

other, l becomes equal to k. In Fig. 4.5, we plot (l−k)
k as a function of ν for a fixed k for the
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Figure 4.4: Results for multiple filaments. (a): The velocity scales with ρ. For large value of ν, the
velocity falls exponentially with a decay constant ' 3.18, which is close to the single
filament case. We use S/L = 1 and for the inset, N = 8; L = 128. (b): The ν− V curve
changes from convex to concave as S/L is increased. The values of Vmax are 0.477nm/s,
3.167nm/s, 3.616nm/s, and 3.723nm/s for S/L = 1, 25, 27 and 210 respectively. We use
N = 4; L = 32 here. Other simulation parameters are as in Table 2.1.

barrier with only two filaments. We find that as ν is increased, the ratio decreases and the

decrease is exponential for moderate to large ν values. In Fig. 4.5 inset, we show how the

two protrusions merge as ν increases.
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Figure 4.5: Merging of protrusions. We plot the quantity (l−k)
k , for the membrane with only two

binding sites at a distance k apart, with l being the contour length between the two binding
sites. For a given k, this quantity decreases with ν exponentially with a decay constant
' 1.44, which indicates merging of two protrusions for large ν. Here we use L = 1024 and
S/L = 1. Inset: Two protrusions merge as we increase ν. The average height profile of
the membrane is shown for different values of ν. Note that the height of the protrusions
also become shorter as ν increases. The ν values appearing in the legends are in the unit
of pN/nm. These data are for k = 256. We use L = 1024 and S/L = 1. Other simulation
parameters are as in Table 2.1.
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4.5 conclusions

In this chapter, we study the force generation mechanism by a set of parallel filaments grow-

ing against an elastic membrane, where the elastic energy is proportional to the square of

the local height gradients. We find that the membrane velocity monotonically decreases with

elasticity and the system always reaches a steady state for all nonzero elasticity. This result is

in contrast with the result for the gradient model, where we have absence of steady state even

for non zero elasticity. We also highlight the importance of the relative time scale between

the dynamics of the membrane and the filaments to determine the qualitative nature of the

dependence of membrane velocity on elasticity. While for fast membrane dynamics, the ve-

locity is a concave function of membrane elasticity, for slow membrane dynamics a convex

dependence is observed. Therefore, the effect of relative time-scale in this case is same as the

gradient model. We also note that two nearby protrusions appear to merge, as the elasticity

increases. In earlier studies of a more detailed modelling of cell membrane [24], it was shown

that actin filament polymerization gives rise to filopodial protrusions. The protrusion speed

depends on elastic properties of the membrane and the membrane distortion also induces

an effective attraction between the filopodia and close by filopodia merge together to form

a larger (wider) protrusions. In our case, within the simple modelling, we are able to show

such an interesting effect.
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5
M E M B R A N E W I T H E L A S T I C A N D B E N D I N G E N E R G Y: H E L F R I C H

H A M I LT O N I A N M O D E L

5.1 introduction

In our last two chapters (Chapter 3 and 4), we study the force generation mechanism by

actin filaments growing against a membrane considering its elastic energy while neglect its

bending energy. However, the cell membrane also possesses bending rigidity, that has been

measured in [42–46]. In this chapter, we study the force generation mechanism by actin

filaments growing against a membrane by explicitly considering its bending rigidity along

with its elastic tension [24, 27, 28]. We describe the energy of the barrier by the Helfrich

Hamiltonian [47], that contains both the elastic as well as the bending energy. The elastic

energy is considered to be proportional to the square of height gradients, similar to the

Gaussian model, while the bending energy is considered to be proportional to the square

of the Laplacian of height. We are interested to know how the introduction of the bending

rigidity affects the force generation process in this case.

Pushed by the growing filaments, the membrane develops a net velocity along the direc-

tion of filament growth. For moderate or high values of bending rigidity κ, the membrane

velocity V shows interesting variation as a function of membrane tension σ. Starting from

a non-zero value at σ = 0, the velocity first decreases with σ, reaches a minimum, then

increases again, reaches a peak, and finally decreases to zero as σ becomes very large. This

dependence is highly unusual, since one would normally expect V to show a monotonic

decrease with σ because as σ increases it ought to become more difficult to push the mem-

brane. We show that the counter-intuitive behavior results from an interplay between the

elastic and bending energy scales of the system. With increasing σ, elastic energy cost for

creating a local protrusion in the membrane increases monotonically, as expected, but the

bending energy cost shows a peak, which in turn gives rise to a peak in the total energy cost.

In other words, there is a range of σ values for which it becomes easier for the system to

create a membrane protrusion as σ is increased with κ held fixed. The membrane velocity

increases in this range as a result.
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To understand the mechanism behind the peak in bending energy cost we examine the

shape of the membrane and show that a qualitative change in the shape is responsible for

this effect. In the limit when both σ and κ are large, the membrane height varies slowly in

space and one can neglect higher order derivative of height and assume height profile of a

protrusion is almost linear, as shown in Fig. 5.1(c) and 5.1(d). For such a local shape of the

membrane, the bending energy has a non-zero value at the binding site, where the filament

is in contact with the membrane. Everywhere else on the membrane the bending energy

is negligible. As σ decreases slightly but still remaining large, the shape of the membrane

remains qualitatively same, but height gradient magnitude now increases and the bending

energy becomes significantly large at the binding site. To minimize this energy, as σ is low-

ered further, the membrane shape finally changes qualitatively, and becomes as shown in Fig.

5.1(a) and 5.1(b), where the peak gets rounded and height profile also does not remain linear

anymore. While the bending energy now is non-zero even away from the binding site, its

variation across the membrane happens more gradually. The bending energy cost to create a

local protrusion, which is proportional to the fourth derivative of height, decreases for such

a configuration, as σ is lowered.
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Figure 5.1: Shape of the membrane for different κ and σ. We note that for small σ but large κ (a and
b), the shape of the membrane is such that the height gradient closer to i = b (where the
filament is driving the membrane) has smaller magnitude. On the other hand, for both
large κ and σ (c and d), the shape of the membrane is linear, where the height gradient at
all the sites are constant, with a peak in height at the site i = b.

This chapter is organized as follows. In Sec. 5.2, we describe our models. Our results for

the single filament is presented in Sec. 5.3 and the results for the multiple filaments are

described in Sec. 5.4 and conclusions are in Sec. 5.5.

54



5.2 description of the model

The present system consists of a set of N parallel filaments growing against a membrane of

size L, whose energy is described by the Halfrich Hamiltonian of the form,

H = σ
L

∑
i=1

(hi − hi−1)
2 + κ

L

∑
i=1

(hi−1 − 2hi + hi+1)
2 (5.1)

where {hi} denotes the height profile of the membrane, σ is the elastic tension and κ is the

bending rigidity. The first term denotes the elastic energy which is proportional to the square

of gradient of height. The second term, which proportional to the square of the Laplacian of

height, describes its bending energy. A similar form has been used in [27], where the growth

of branched actin network is studied in order to investigate the effect of molecular transport

on the force-velocity relation. Here, we do not apply any external force, rather we vary σ

and κ in order to investigate the effect of these quantities on the force generation process.

The dynamics of the system is same as described in Chapter 3 and Chapter 4. The fila-

ments grow and push the membrane while the membrane undergoes independent thermal

fluctuations in its local height and tends to minimize its energy. The local height of the mem-

brane can change with rates R+ and R− which satisfies the condition given in Eq. 3.2. We

use R+ = e−β∆E and R− = 1. For ∆E = 0, both the rates are taken to be unity.

The expression for ∆E at the i-th site can be written by using Eq. 5.1 as,

∆E±i = σ{2d2 ∓ 2d(hi−1 − 2hi + hi+1)}+ κ{6d2 ± 2d(hi−2 − 4hi−1 + 6hi − 4hi+1 + hi+2)}

or,

∆E±i = σ{2d2 ∓ 2dh′′i }+ κ{6d2 ± 2dh′′′′i } = ∆S±i + ∆B±i (5.2)

where, h′′i and h′′′′i are second and fourth derivatives of height at the i-th site; ∆S±i and

∆B±i are the elastic and bending energy costs respectively. The sign + (−) corresponds to

the energy cost when the height of i-th site, i.e., hi increases (decreases) by one unit. We note

that the elastic energy cost is proportional to the second derivative of height (h′′i ) and the

bending energy cost is proportional to the fourth derivative of height (h′′′′i ) (see Eq. 5.2). The

simulation technique used here is also the same as the previous models.
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5.3 results for single filament

In this section, we present our results for the single filament case. These results are quite

general and also valid for multiple filaments with N << L. In our later sections, we will also

discuss the case of multiple filaments.

5.3.1 Non-monotonic variation in bending energy cost

In sec. 5.1, we show that the qualitative shape of the membrane changes as the value of σ is

changed, keeping κ at some moderate or large value. This effect gives rise to non-monotonic

variation in fourth derivative of height at the binding site (h′′′′b ). Since the bending energy

cost in order to push the membrane (∆B+
b ), is related to h′′′′b by Eq. 5.2, ∆B+

b also shows

non-monotonic variation with σ. We show these results in Fig. 5.2.
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Figure 5.2: Energy cost of movement at the binding site. (a): The value of h′′′′b varies non-
monotonically with σ for large κ. (b): For large κ, ∆E+

b , which is the energy cost when
the binding site increases by one unit, varies non-monotonically with σ. In the small σ re-
gion, the variation in ∆E+

b is mainly due to the variation in the bending energy cost ∆B+
b ,

as the elastic energy cost is negligible. For large σ, on the other hand, the variation in ∆E+
b

is mainly dominated by elastic energy cost ∆S+
b , as the bending energy cost saturates for

large σ. We use L = 64, κ = 1.2pN and S/L = 1 here. Other simulation parameters are as
in Table 2.1.

The non-monotonic variation in h′′′′b is quite surprising, as one may expect the height

derivatives to decrease with σ. This is because the height gradients are expected to decrease

with σ in order to minimize the elastic energy, which means all the higher derivatives at the

binding site should also decrease with σ, but we note that h′′′′b increases with σ in the small

σ region. Here, we explain this interesting behaviour in detail. For large σ and κ, the shape

of the membrane is such that all the derivatives (h′i, h′′i , etc.) are zero. When σ is decreased

keeping κ large, it will develop small gradients in the system, but the shape will be such

that the gradients (h′i) are same throughout the system with a peak in height at the site i = b,
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which costs less energy [see Fig 5.1(c) and 5.1(d)]. In this case, the h′′b will be negative and

will increase (in magnitude) as σ is decreased, while for other sites, h′′i will be zero [See Fig.

5.3(a)]. Now, if we assume a continuum surface of this kind, it is clear that the curvature

of h′′i at i = b, which is nothing but h′′′′b , will increase as σ is decreased. However, in the

small σ region, the shape of the surface will deviate from the previous structure, and will

take a shape where the gradients h′i near the binding site will be less (in magnitude) than

the gradient far from it [see Fig. 5.1(a) and 5.1(b)]. In such a situation, when σ is decreased,

h′′i at the binding site will increase (in magnitude) slower that h′′i at some neighbourhood of

binding site [see Fig. 5.3(b)]. Thus, h′′′′b , which is the curvature of h′′i at i = b, will decrease

as σ decreases in this case. In between, there will be a maximum of h′′′′b . This explains why

h′′′′b will behave non-monotonically with σ for large κ.
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Figure 5.3: Variation of h′′i with i for different values of σ and large κ. In order to compare the cur-
vatures of h′′i for different σ at the binding site, we subtract h′′b from it. (a): The quantity
h′′i − h′′b for different values of large σ. We note that when σ decreases, the curvature of
h′′i at the binding site increases. Thus h′′′′b will increase as σ decreases in this region. The
values of h′′b for σ = 0.6, 0.8 and 1.0 pN are 6.97× 10−3, 2.60× 10−3 and 1.30× 10−3 (in
units of d) respectively. (b): The quantity h′′i − h′′b for different values of small σ. We note
that the curvature of h′′i at i = b decreases as σ decreases. Thus, in this region, h′′′′b will
decrease as σ will decrease. The values of h′′b for σ = 0.02, 0.04 and 0.06 pN are 1.17, 0.92
and 0.76 (in units of d) respectively. We use L = 64 ans S/L = 1 here. Other simulation
parameters are as in Table 2.1.

We also note that in Fig. 5.2, the bending energy cost saturates for large σ, since for such

a large value of σ, all the height derivatives at hb (h′′b , h′′′′b ) become negligible and bending

energy cost becomes constant (see Eq. 5.2). In this region, the variation in the ∆E+
b is mainly

dominated by the variation is elastic energy cost, which increases linearly as ∼ 2d2σ. In the

small σ region, on the other hand, the variation in total energy cost ∆E+
b is mostly dominated

by the bending energy cost. This is because κ is large and elastic energy cost is negligible

for small σ. The bending energy cost itself varies non-monotonically, which gives rise to

non-monotonic variation in ∆E+
b in this region. Thus, we note that there is a range of σ

value, for which the energy cost decreases when the value of σ increases. This rich interplay
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between the elastic and bending energy scales gives rise to non-monotonic variation in the

elasticity-velocity curves that we discuss in the next section.

5.3.2 Membrane velocity varies non-monotonically with σ

In our previous section, we note that there is an interplay between the elastic and bending

energy scales in the system. For small σ, the variation in the bending energy cost ∆B+
b

dominates while for large σ, the variation in the elastic energy cost ∆S+
b dominates. This

effect has a direct consequence on the non-monotonic variation in the membrane velocity V.

We measure V as a function of the elasticity (σ) for a given value of bending rigidity (κ). We

note that for small κ, the velocity falls monotonically with σ and σ − V curves are convex.

However, for κ not too small, the velocity shows interesting non-monotonic variation with

σ [Fig. 5.4(a)]. We note that the velocity first decreases with σ, then increases and reaches

a peak at σ = σ∗ and finally decreases again with σ (Fig. 5.4(a), top right inset). The peak

position of the σ−V curve shifts towards small σ, as the value of κ increases (Fig. 5.4(a), top

left inset). Below, we explain these results.
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Figure 5.4: σ − V curve for different values of κ and L. (a): For small value of κ, the velocity falls
monotonically with σ and the σ − V curves are convex. For large value of κ, the curve
becomes non-monotonic, with a peak at σ = σ∗. Top left inset: The value of σ∗ decreases
with κ. Top right inset: We zoom small σ region and note that V first decreases, reaches a
minima, then increases and reaches a peak value at σ = σ∗, then decreases again with σ.
Bottom inset: For very large σ, velocity falls exponentially with decay factor 3.6 which is
close to the analytically predicted value 2βd2. For top right and bottom insets, we use κ =
1.2pN. For all the plots, we use L = 64 and S/L = 1. (b): For small value of κ(= 0.01pN),
the velocity scales as 1/L. Top inset: For large value of κ(= 0.8pN) also, the velocity scales
with 1/L. Bottom inset: The value of σ∗ remains independent of L. Here, we use S/L = 1.
Other simulation parameters are as in Table 2.1.

The expression for the velocity at the binding site can be written as,

Vb = U0 p0e−β∆E+
b + e−β∆E+

b − (1− p0)e−β∆E−b (5.3)
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where p0 is the contact probability of the filament tip with the membrane. The first term

in Eq. 5.3 corresponds to the bound filament polymerization, the second and third terms are

for independent upward and downward movement of the binding site respectively. As, the

downward movement happens only when there is no filament in contact with the membrane,

a factor (1− p0) is multiplied with the downward movement. For large κ, both the ∆E±b are

positive as the height derivatives (h′′b , h′′′′b etc.) are smaller in comparison to other terms (see

Eq. 5.2). Thus, for both the upward and downward movements, the energy is increasing, and

each process will occur with rate R+ = e−∆E±b in this region. We note that the value of p0 is

' 0.5 for any σ if S/L is not too large (Fig. 5.5(a), inset). This is because an introduction of

κ makes the membrane rigid enough, and we have shown in our chapter 3 that for a rigid

barrier, p0 = 1−W0/U0 ' 0.5 [70]. Note that the expression for average velocity V is the

same as Vb, as the system is in the steady state, which means the velocity of all the sites are

same. For large κ and small σ, we can neglect the elastic energy cost. Using the value of ∆E±b
and neglecting the terms containing σ, the expression for V turns out to be,

V ' e−6βd2κ{(U0 + 1)p0e−2βdκh′′′′b − 2(1− p0)Sinh(2βdκh′′′′b )}

In the above expression, only h′′′′b shows a variation with σ and all other terms are constant.

Since Sinh(x) is a monotonically increasing function of x, an increase in h′′′′b will cause a

decrease in V and vice versa. Since, h′′′′b increases first and then decreases in the small σ

region, V will first decrease and reach a minima, then will increase again. Thus, we note

that there is a range of σ for which the velocity of the membrane increases with σ. When σ

becomes large, the terms in Eq. 5.3, that contain elastic tension is no longer negligible. In this

case, however, the terms containing height derivatives at hb (h′′b , h′′′′b etc.) becomes negligible

and can be neglected in the expression of V. The V (Eq. 5.3) then will have the form,

V ' (U0 + 1)p0e−6βd2κe−2βd2σ

Thus, in this region, V will fall exponentially as a function of σ. We indeed note an expo-

nential fall of velocity in this region. The exponential decay factor in this case is 2βd2 ' 3.52

which is close to the numerically observed value 3.6 (Fig. 5.4(a), bottom inset). Thus, we

explain above, why the velocity of the membrane will have non-monotonic variation with σ

for large κ. We also note that the peak in the σ− V curve corresponds to the region where

the height derivatives (h′′b , h′′′′b etc.) becomes negligible. In this region, the bending energy

cost saturates and the elastic energy cost increases linearly with σ, which causes the velocity

to fall exponentially with σ. Larger the value of κ, smaller will be the value of σ, where

the height derivatives become negligible. This explains why the value of σ∗ will decrease

with κ (Fig. 5.4(a), top left inset). For small κ, the energy cost ∆E±b does not show any non-
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monotonic variation, rather it increases monotonically with σ (data not shown). In a similar

way as above, we can explain that in this case V will also fall monotonically with σ.

Next, we measure σ−V curves for different values of L. We note that σ−V curves collapse

for different L if we scale velocity by 1/L, for both the small and large κ [Fig. 5.4(b)]. The

explanation for this 1/L scaling is same as for the gradient model or the Gaussian model.

Since, velocity scales with 1/L, it is expected that the value of σ∗ (for large κ) will also be

independent of L. We plot σ∗ as a function of L in Fig. 5.4(b), bottom inset and explicitly

show this.

5.3.3 Faster membrane dynamics lowers σ∗

We plot σ − V curves for different values of S/L in Fig. 5.5. We note that for small κ, the

σ−V curves become concave when S/L becomes very large [Fig. 5.5(a)]. We also note that

the p0 also becomes very small in the small σ region for faster barrier dynamics (Fig. 5.5(a),

inset). The explanation for this effect is similar to the gradient or the Gaussian model. For

large κ, on the other hand, we note that the shape of the σ−V curves remain non-monotonic

[Fig. 5.5(b)]. The peak position of the velocity shifts towards smaller σ with S/L (Fig. 5.5(b),

inset). We can explain the shift of the peak position of velocity (or σ∗) with S/L in the

following way. In our previous section, we explain that the peak in the velocity arises at

some value of σ = σ∗, at which the height derivatives (h′′b , h′′′′b etc.) become negligible. For

smaller value of S/L, the membrane sites can not fluctuate much. Thus, once the filament

pushes the binding site, the height gradient at the binding site persists for much longer time.

Thus the average value of height gradient will be higher in this case for a given σ. Thus,

the value of σ at which the height derivatives become negligible, will also increase, which

increases σ∗. On the other hand, for large S/L, the bulk sites quickly catch up with the

binding site and thus the height gradient at the binding site quickly disappears. Thus, the

value of σ∗ will be smaller in this case. Thus, the value of σ∗ will decrease with S/L.

5.3.4 κ −V curves are monotonic for any σ

In our earlier sections, we measure the velocity of the membrane as a function of σ, with

the value of κ held fixed. In this section, we measure velocity as a function of κ keeping

the value of σ fixed. We note that the velocity falls monotonically with κ, even for large

σ [see Fig. 5.6(a)]. In this case, we note that the energy cost at the binding site, i.e., ∆E+
b

increases monotonically with κ even for large σ [Fig. 5.6(b)]. Thus, we do not find any non-

monotonicity in velocity here. This observation can be explained as follows. For large σ, a

small height gradient will cause very high elastic energy, since each site of the membrane
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Figure 5.5: σ−V curves for different values of S/L. (a): σ−V curves for small κ and different S/L.
For small S/L, the curves are convex, while for S/L >> 1, the curves become concave.
Inset: The contact probability p0 is close to 0.5, when the value of S/L is not too large,
however, for very large S/L, p0 becomes negligible in the small σ. (b): σ − V curves for
large κ and different S/L. The curves are non-monotonic, but the peak position (σ∗) shifts
towards smaller σ as S/L increases. Inset: The value of σ∗ decreases with S/L. We use
L = 64 here.

will have an elastic energy. Thus, for large σ, the height derivatives (h′b, h′′b etc.) at the binding

site become negligible even for very small κ. Thus, the variation in ∆E+
b is only due to the

variation in bending energy cost, while the elastic energy cost saturates at the beginning and

will not show any variation with κ. For small σ, the elastic energy cost will be negligible

and the variation in the bending energy cost will dominate. Thus, for any value of σ, the

variation in the beading energy cost will dominate over the elastic energy cost. Thus, ∆E+
b

will increase monotonically with κ and the velocity will decrease with κ. We also note that

velocity scales as 1/L similar to the previous case (Fig. 5.6(a), inset).
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In all the above cases, we take the membrane size L >> 1. However, for small L, we note

that there are finite size effects. For small value of L, the σ−V curves or κ−V curves do not

scale with 1/L (data not shown). The value of σ∗ is also found to increase with L and then

saturates for very large L (data not shown).

5.4 results for multiple filaments

So far, we have considered the case of single filament. In this section we will present a brief

discussion on multiple filaments. We define the filament density as ρ = N/L. We first discuss

the case of small filament density, i.e., ρ << 1. Then we will also discuss the case of ρ ∼ 1.

5.4.1 For N � L, the qualitative behaviour remains same as the single filament

For ρ � 1, we note that the qualitative behavior of the system remains same as that for

the single filament case. In Fig. 5.7(a), we plot the σ− V curves for multiple filaments with

small ρ for a given value of κ. We note that similar to the single filament case, σ− V curve

is monotonic for small κ while it shows non-monotonic variation for large κ, with a peak

value of V at σ = σ∗. The value of σ∗ is also found to decrease with κ (Fig. 5.7(a), inset). We

note that V scales as ρ for both the small as well as large κ [Fig. 5.7(b)]. Thus, the value of σ∗

should also be independent of ρ. We plot σ∗ as a function of ρ in Fig. 5.7(b), bottom inset and

explicitly show this. We also note that for small κ, the σ− V curve changes from convex to

concave for S/L >> 1 (data not shown). The κ −V curves are monotonic for any σ, similar

to the single filament case (data not shown).

5.4.2 For N ∼ L, σ∗ depends explicitly upon N and L

In the previous section, we discuss the case of multiple filaments with very small filament

density, such that there are no interaction between the filaments. However, as ρ increases,

the filaments are no longer non-interacting and the single filament picture does not remain

valid in this case. Our data in Fig. 5.8 show that V ∼ ρ scaling is lost and σ∗ is no longer

independent of ρ. We note that σ∗ decreases with ρ for a given L. For a given ρ, σ∗ increases

with L (or N). Thus, σ∗ is not only a function of ρ rather explicitly depends upon N or L

also. We explain this effect below. For a given L, when we increase N (or ρ), the filaments are

very close to each other. In such a situation, a bulk site will feel more upward pull due to

the presence of binding sites very close to it. Thus, the membrane will become flat and the

magnitude of height gradients will decrease. Thus, for a given σ, higher ρ will have smaller

value of height derivatives (h′′b , h′′′′b etc.). Thus, σ∗, at which the height derivatives become
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Figure 5.7: Results for multiple filaments with ρ << 1. (a): σ−V curves for different values of κ. The
velocity falls monotonically for small κ, while vary non-monotonically for large κ, with
a peak at σ = σ∗. Inset: The value of σ∗ decreases with κ. Here, we use ρ = 1/128. (b):
σ− V curves for different ρ and small κ (= 0.01pN). We note that velocity scales with ρ.
Top inset: σ−V curves, for different ρ for large κ (= 0.8pN). In this case also, V scales with
ρ. Bottom inset: σ∗ remains independent of ρ. We use S/L = 1 here. Other simulation
parameters are as in Table 2.1.

negligible, will decrease with ρ for a given L. We show this explicitly in Fig. 5.8(b). On the

other hand, for a given ρ, when N (or L) is increased, the height derivative increases [Fig.

5.8(b)]. Thus, the height derivatives become negligible at higher value of σ, which increases

σ∗.
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5.5 conclusions

In this chapter, we study the force generation by parallel actin filaments growing against a

membrane whose energy is described by the Helfrich Hamiltonian. The Hamiltonian con-

tains an elastic energy term, being proportional to the square of height gradients and a

bending energy term which is proportional to the square of the Laplacian of height. We note

that the shape of the membrane changes qualitatively when we change the value of elasticity

(σ) keeping the bending rigidity (κ) fixed. This effect gives rise to a non-monotonic variation

in the bending energy cost in order to push the membrane. We also note that there is a rich

interplay between the elastic and bending energy scales in the system, as a consequence,

the elasticity-velocity curves show non-monotonic variation for moderate or large value of κ.

The velocity first decreases with σ and reaches a minima, then increases with σ and reaches

a peak at σ = σ∗ and then again decreases with σ for large σ values. We also note that the

peak position of the curve (σ∗) shifts towards the smaller elasticity as the bending rigidity is

increased. The value of σ∗ is found to be independent of membrane size (L) for single fila-

ment. For multiple filaments with small filament density, σ∗ is independent of the filament

density, however, for large filament density, σ∗ explicitly depends upon the filament density

as well as the size of the membrane. For small κ, the shape of σ − V curve changes from

convex to concave when the membrane dynamics becomes faster. For large κ, however, the

σ − V curve remains non-monotonic even for faster membrane dynamics. The value of σ∗

decreases as the membrane dynamics becomes faster in this case. We also note that κ − V

curves are monotonic for any value of σ, and we do not observe any non-monotonicity here.

In our previous chapters (Chapter 3 and 4), a similar model has been studied, where the

energy of the membrane is described by only its elastic energy and bending energy has been

neglected. We note that for the Gaussian model, the velocity falls monotonically with the

elastic tension for any non-zero value of elastic tension. For the present case, introduction of

bending rigidity changes the qualitative nature of the results. The non-monotonic variation

of velocity is also seen for the gradient model, but the origin of this effect is different from

the present case. For the gradient model, the non-monotonicity arises due to the competition

between the elastic force of the membrane and the polymerization force of the filament, with

a peak in velocity where the two forces become equal. For the present case, however, it arises

due to the interplay between the elastic and bending energy scales. Unlike gradient model,

where the system does not have a steady state for small elastic tension, here we have steady

state throughout for any non-zero σ or κ.

Finally, within simple modelling of force generation by parallel actin filaments against a

membrane, we are able to show many interesting effects by varying its bending rigidity and

elastic tension. There are a number of experiments, where the effect of elastic tension on the
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force generation mechanism have been studied [39–41]. There are some experiments, where

the bending rigidity of the cell membrane have been measured [42–46], but the effect of

bending rigidity on the force generation mechanism have not been addressed. Our simple

study may open up the possibility to observe some of these effects in experiments.
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6
C O M PA R I S O N B E T W E E N T W O T Y P E S O F F I L A M E N T- B A R R I E R

I N T E R A C T I O N S

6.1 introduction

In our earlier chapters (Chapters 2 to 5), we have studied force generation by actin filaments

growing against a barrier, considering its shape fluctuations, its elastic properties, bending

rigidity etc. In all these models, the filament-barrier interactions are such that a filament can

always grow and push the barrier even if it is in contact with the barrier. Such models are

also studied in [17–19, 23, 65, 77]. There are another class of models, where it is assumed

that a filament can only grow when there is sufficient gap between the filament tip and

the barrier [13, 25, 31, 48, 49]. While the models discussed above vary in many aspects, the

interaction between the growing end of the filament and the barrier can be roughly classified

in the above two types. Although the difference between the two mechanisms seems to

be microscopic and rather a matter of modelling details, we find that the force generation

properties are significantly different in the two cases. Interestingly, this difference persists

even in absence of shape fluctuations of the barrier, when the barrier is modelled like a rigid

wall. In this chapter, we will discussed some important qualitative differences between these

two types of filament-barrier interactions, which has not been addressed in earlier literatures,

to the best of our knowledge.

For ease of nomenclature, we denote the two cases by type A and type B, where type

A stands for those models where filaments can actively push the barrier and grow, and

type B represents those models where the filaments can grow only if there is sufficient

gap between the filament tip and the barrier to insert one monomer. We demonstrate the

difference between type A and B models for three different types of barrier: A rigid wall-

like barrier, a barrier with Kardar-Parisi-Zhang dynamics which is studied in Chapter 2 and

an elastic barrier which is studied in Chapter 3. We note that the main differences between

type A and B models are manifested in the way various properties depend on the relative

time-scale S between the filament and barrier dynamics.
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For a rigid barrier with a type A interaction with the filaments, we find the shape of force-

velocity curve is always concave when there are multiple filaments present in the system. On

the other hand, for a single filament, the force velocity curve is convex (concave) when the

thermal fluctuations of the rigid barrier position are much slower (faster) than the filament

dynamics. For type B interaction, the force-velocity curve for multiple filaments shows con-

vex (concave) shape for slower (faster) barrier dynamics, but for a single filament the shape

does not depend on the time-scale. Even at zero force, the velocity V0 of the barrier for the

two types show different behavior. While for type A interaction, V0 is independent of the

time-scale of barrier dynamics, for type B interaction, V0 increases as the barrier dynamics

becomes faster. The stall force Fs decreases for type A as the barrier dynamics becomes faster,

but remains constant for type B. As the number of filaments in the system becomes larger,

Fs also increases. Our analytical calculations show that for type B, stall force scales linearly

with the number of filaments, while for type A, there is a logarithmic correction to linear

scaling. For the KPZ barrier with type A interaction (Chapter 2), Fs decreases as the barrier

dynamics becomes faster, but remains constant for type B. For an elastic barrier with type

A interactions (Chapter 3), we note that µ∗ decreases with S/L and for very slow barrier

dynamics, it yields a monotonically decreasing convex µ−V curve. For type B, on the other

hand, µ∗ remains same for a wide range of the barrier movement time-scale and the shape of

the µ−V curve remains non-monotonic. However, in the limit when the barrier motion be-

comes very fast, both the models show concave µ−V curves. Some of the results discussed

above have been published in [78].

This chapter is organized as follows. In Sec. 6.2 we present our results for the rigid barrier

model, in Sec. 6.3 we discuss KPZ barrier model, in Sec. 6.4 we discuss elastic barrier model

and finally present our conclusions in Sec. 6.5.

6.2 rigid barrier model

In this model, the barrier is described as a one dimensional rigid and movable wall. Under

the action of an external force F, the wall tends to move downward. Thermal fluctuations can

also move the barrier in the upward direction, but such movements come with an energy cost.

Let R+ and R− be the upward and downward movement rates for the barrier by a discrete

amount d [Fig. 6.1(b)]. These rates satisfy local detailed balance, and we choose R+ = e−βFd

and R− = 1. Any downward movement of the barrier that brings it below any filament tip,

is forbidden.

The filaments are modelled as rigid rod-like objects, same as previous chapters. For sim-

plicity, we throughout assume the length of the monomer is same as d, the step of barrier

movement. For type A mechanism, a bound filament can grow by pushing the barrier up-
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ward by an amount d and thereby performing work Fd against the external force [Fig. 6.1(c)].

The rate of such a process is U0e−βFd. For type B mechanism, on the other hand, the bound

filament polymerization is not allowed and one must wait until thermal motion takes the

barrier upward and a gap of length d is created between the filament tip and the barrier. Fig.

6.1 summarizes our model schematically.

U0

W0

(a)
F F

(b)
F F

R+

R-

(c)
F F

U0 R+

Figure 6.1: Schematic representation of rigid barrier model. (a): A free filament polymerizes (depoly-
merizes) with rate U0 (W0). (b): The barrier height undergoes thermal fluctuations. In
presence of the external force F, the forward process which increases the height is energet-
ically costly and happens with rate R+ while the reverse process that decreases the height
is energetically favourable and happens with rate R−. (c): A bound filament pushes the
barrier by an amount d that costs energy and occurs with rate U0R+. This movement is
allowed only for type A.

We perform simulations using kinetic Monte Carlo (MC) technique as described in our

earlier chapters. The relative time-scale between the filament dynamics and the barrier dy-

namics is quantified by a parameter S . For a system having N number of filaments, each

Monte Carlo time-step consists of N filament updates and S independent barrier updates.

Starting from an initial condition of all filaments of length d (i.e. each filament consists of

only one monomer) and the barrier is also at a height d, in contact with all filament tips, the

system undergoes time-evolution and after a large number of Monte Carlo steps, when the

system reaches steady state, we perform our measurements. The various simulation param-

eters are given in Table 2.1.

In the rest of this section, we present our results focussing on the major differences ob-

served between type A and B models. We first present the results for single filament. Then

we discuss the multiple filaments case. A rigid barrier with both the type A and B interac-

tions have been widely studied in [13, 17, 19, 23, 31, 48, 49], but the effect of relative time

scale between the filament and the barrier dynamics is not addressed in most of the cases.

We find that the relative time scale plays an important role, and brings out the difference

between type A and B models.

6.2.1 Variation of V0 with S for single filament

The velocity of the barrier is measured as its average displacement per MC step. In the

absence of any external force, the barrier velocity is denoted as V0. The contact probability
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p0 can be calculated in a similar way as done in earlier chapters. Let pi be the probability

that there is a gap of size i between the barrier and the filament tip. The contact probability

p0 thus corresponds to i = 0. The master equation for pi can be written as

dpi

dt
= (U0 + S)pi+1 + (W0 + Se−βFd)pi−1 − (U0 + S + W0 + Se−βFd)pi; f or i > 0

and
dp0

dt
= (U0 + S)p1 − (W0 + Se−βFd)p0; f or i = 0

where all symbols have their usual meaning. The above equations are valid for both the types

A and B, as the bound filament polymerization does not change pi. In the steady state, one

has the recursion relation pi = (Se−βFd+W0
S+U0

)i p0; which by applying normalization condition

gives the expression for the contact probability,

p0 =
U0 −W0 + S(1− e−βFd)

U0 + S
(6.1)

which holds for both type A and type B dynamics.

Eq. 6.1 can also be derived in a slightly different way. We present this alternative derivation

here. Since the barrier is being driven by the growing filament, its velocity must be same

as the growth velocity of the filament. The velocity of the filament, for type A is simply

{U0 p0e−βFd + U0(1− p0)−W0}, while the velocity of the barrier has the form {U0 p0e−βFd +

Se−βFd − S(1− p0)}. Equating these two for type A, gives the same expression for p0 as

in Eq. 6.1. For type B, the velocity of the filament is simply {U0(1− p0) −W0}, while the

velocity of the barrier is {Se−βFd−S(1− p0)}. Equating these two also gives the same result

for p0 as in Eq. 6.1.

For F = 0, using Eq. 6.1, we have p0 = (U0 −W0)/(U0 + S). Now, for type A model, V0

can be written as a sum of three terms:

V0 = d{p0U0 + S − S(1− p0)} (6.2)

Here, the first term corresponds to the velocity imparted by bound filament polymerization,

which occurs with rate U0 for F = 0. The second and third terms are for upward and

downward thermal fluctuations of the barrier, which take place on an average S times in one

MC step. The factor (1− p0) ensures that the filament is not bound to the barrier, blocking its

downward movement. Substituting the expression for p0, we get the velocity of the barrier

for type A model as V0 = d(U0−W0) which is independent of S [70]. The value of V0 in this

case is simply the maximum velocity of the filament, since the bound filament is able to grow

freely in the absence of any opposing force. For type B case, bound filament polymerization
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is not allowed and hence the first term in the expression for V0 will not be there, which gives

V0 = d(U0−W0)

1+U0
S

, which depends on S . The filament in this case still feels the presence of the

barrier and as S increases, free space is created more often above the filament tip which

increases growth speed and hence V0. In the limit of very large S , we have same V0 for type

A and B. We compare these results with the numerics in Fig. 6.2 which shows very good

agreement.
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Figure 6.2: V0 as a function of S for rigid barrier. For type A, V0 remains constant at the value d(U0−
W0) for a wide range of S . For type B, V0 increases with S and then saturates to a value
d(U0 −W0). The continuous lines show the analytical predictions and discrete points are
from numerical simulations. Simulation parameters are as in Table 2.1.

6.2.2 Force-velocity curves with different S for single filament

In presence of non-zero external force F, the velocity of the barrier is expected to decrease

with F. In Fig. 6.3 we plot the force-velocity curve for type A and type B models for different

values of S . For the ease of comparison, we have plotted both curves using rescaled velocity

V/V0 and rescaled force F/Fs. The left panel is for type A and this plot shows that the force-

velocity curve is convex for S � 1 and becomes concave for large S [31]. However, for type

B model, our data in Fig. 6.3(b) show that the force-velocity curve does not change shape

with S . In fact all the curves for different values of S fall on top of each other. We explain

this observation below by analytically calculating V as a function of F.

For type A systems, the Eq. 6.2 changes to V(F) = d{p0U0e−βFd + Se−βFd − S(1− p0)} in

presence of external force F. Using the expression for p0 from Eq. 6.1 we get

V(F) = d
[
(U0e−βFd + S){U0 −W0 + S(1− e−βFd)}

(U0 + S)
− S(1− e−βFd)

]
(6.3)
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In the limit of S � 1, above equation becomes V(F) ' d(U0 −W0)e−βFd. Thus, for S � 1,

the velocity drops exponentially with force which gives rise to a convex shape. On the other

hand, in the limit of small F the right hand side of Eq. 6.3 becomes d(U0−W0)

(
1− U0βd

U0+S F
)

and for S � 1 we have V ' d(U0 −W0), which is independent of F. Thus for large S
the velocity remains almost constant for small force and decreases for large force, which

indicates a concave curve.

For type B, since filaments cannot push the barrier, velocity has the form V(F) = d{Se−βFd−
S(1− p0)}, which after putting the value of p0 becomes,

V(F) =
d{(U0 −W0)−U0(1− e−βFd)}

1 + U0
S

(6.4)

and if we scale the velocity by V0, then we have, V(F)
V0

= U0e−βFd−W0
U0−W0

which is independent of S .

Thus, the shape of the force-velocity curve does not depend on S in this case. The analytical

calculations for V(F) agree well with the numerics in Fig. 6.3.
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Figure 6.3: F − V curves for different values of S for rigid barrier. (a) Type A: We plot the velocity
of the barrier as a function of the scaled force F/Fs. We note that the force-velocity curve
changes its nature with S . For S << 1, the curve is convex which changes to concave for
S >> 1. (b) Type B: We plot the scaled velocity V/V0 as a function of F. In this case, unlike
type A, the shape of the force velocity curve is independent of S . Simulation parameters
are as in Table 2.1.

6.2.3 Stall force as a function of S for single filament

The analytical expression for Fs for type A can be obtained by simply putting the left hand

side of Eq. 6.3 zero and solving for F. This gives a quadratic equation

U0Sx2 −U0(U0 −W0 + 2S)x + SW0 = 0
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where x = e−βFsd. This allows only one physical solution for x and we get

Fs = −
1

βd
ln
[(

U0 −W0 + 2S
2S

)(
1−

√
1− 4U0W0S2

U2
0(U0 −W0 + 2S)2

)]
(6.5)

In Fig. 6.4 we verify this against numerical data. As seen in this plot, the stall force decreases

with S and saturates to a non-zero value for large S . For type B model, on the other hand,

the stall force is independent of S , as seen from putting the left hand side of Eq. 6.4 zero and

finding Fs =
1

βd ln U0
W0

. The expression for Fs in this case also matches well with the numerics

(Fig. 6.4).
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Figure 6.4: Fs as a function of S for rigid barrier. For type A, Fs decreases as the barrier dynamics
becomes faster. For very large S , Fs is found to saturate to a value 1.87 which is close to

the analytical prediction of Fs(S → ∞) = − 1
βd ln

(
1−

√
1− W0

U0

)
' 1.873. For type B, Fs

remains constant over a wide range of S . Simulation parameters are as in Table 2.1.

6.2.4 Results for multiple filaments

So far in this section, we have discussed the difference between type A and B dynamics

for the case of a single filament in the system. Here, we present our results for multiple

filaments. Interestingly, in some cases we find opposite behavior compared to the single

filament case. In Fig. 6.5 we show force-velocity curves for different S values for type A and

B dynamics. While for type A model, force-velocity variation depends on S , the shape of

the curve remains concave-like for a wide range of S that we have examined. On the other

hand, the data for type B model [in Fig. 6.5(b)] show that F−V characteristic changes from

convex to concave as S value increases. This behavior is opposite to what we had observed

for the single filament case (see the data in Fig. 6.3), where type A model showed convex to
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concave transition as S is varied and type B model showed no dependence of F− V shape

on S . We explain this result below.
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Figure 6.5: Force velocity curves for multiple filaments with rigid barrier. (a) Type A: The force ve-
locity curve is concave for any value of S . (b) type B: Force velocity curve is convex for
small S while it changes to concave for large S . Our analytical predictions are shown by
continuous lines and they match well for small S . We use N = 20 here. Other simulation
parameters are as in Table 2.1.

In order to explain the above results analytically, we need to first calculate the contact

probability p0 as done for the single filament case. For multiple filament case with type A

interaction, when a bound filament polymerizes, it will change pi and thus have its corre-

sponding loss or gain terms in the time evolution equation for pi. For type B, on the other

hand, a bound filament can not polymerize. Thus, unlike single filament case, in this case,

type A and B will have different time evolution equations for pi. The value of p0 also turns

out to be different for type A and B in this case. The time-evolution equations for pi for type

A interaction can be written as,

dp0

dt
= {U0 + S(1− p0)

N−1}p1 − {(N − 1)U0 p0e−βFd + W0 + Se−βFd}p0, (6.6)

dpi

dt
= {(N − 1)U0 p0e−βFd + W0 + Se−βFd}pi−1 + {U0 + S(1− p0)

N−1}pi+1

− {(N − 1)U0 p0e−βFd + W0 + Se−βFd + U0 + S(1− p0)
N−1}pi; for i ≥ 1. (6.7)

Solving the Eqs. 6.6 and 6.7 in steady state, we obtain the recursion relation

pi =

(
(N − 1)U0 p0e−βFd + W0 + Se−βFd

U0 + S(1− p0)N−1

)i

p0; i = 1, 2, ... (6.8)

Using the normalization relation, ∑ pi = 1 we get

{(N − 1)U0 p0 + S}e−βFd + W0

U0 + S(1− p0)N−1 + (p0 − 1) = 0 (6.9)
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where p0 is the contact probability. We can solve the above equation numerically and obtain

p0 as a function of S and F. We compare this result with simulation in Fig. 6.6(a) and find

reasonable agreement.

For type B interaction, the time evolution equation will have the form,

dp0

dt
= {U0 + S(1− p0)

N−1}p1 − {W0 + Se−βFd}p0, (6.10)

dpi

dt
= {Se−βFd + W0}pi−1 + {U0 + S(1− p0)

N−1}pi+1

− {Se−βFd + W0 + U0 + S(1− p0)
N−1}pi; for i ≥ 1. (6.11)

In the same way, we obtain the recursion relation

pi =

(
Se−βFd + W0

U0 + S(1− p0)N−1

)i

p0; i = 1, 2, ... (6.12)

Using the normalization relation, ∑ pi = 1 we get

Se−βFd + W0

U0 + S(1− p0)N−1 + (p0 − 1) = 0 (6.13)

where p0 is the contact probability. Solving the equation numerically we can obtain p0 for

any general value of S and F [see Fig. 6.6(b)].
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Figure 6.6: Contact probability (p0) as a function of F for rigid barrier with multiple filaments. (a)
Type A: For small F, p0 remains close to zero while for large F, it increases with F and
saturates to 1/2. (b) Type B: Unlike type A, at F = 0, the value of p0 increases as S
decreases. For high value of S , p0 starts from small value and then increase with F which
finally saturates to 1/2. Points are simulation results and lines are analytical predictions.
We use N = 20 here. Other simulation parameters are as in Table 2.1.

For type A dynamics, the expression for the barrier velocity can be written as

V(F) = d[Np0U0e−βFd + S{e−βFd − (1− p0)
N}] (6.14)
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The terms in Eq. 6.14 have similar explanations as given in Sec. 6.2.2. The last term cor-

responds to the situation when no filament is bound to the barrier, which is required for

downward movement of the barrier. After substituting for p0, we compare the resulting ex-

pression for V(F) against simulations in Fig. 6.5(a). We find that for S . 1 the agreement is

reasonably good but for S � 1, there is deviation between the two results. In our analytical

calculation, we have used the assumption that the filaments are independent. This is not

strictly true, since the barrier induces an effective coupling between the filaments and for

large S the effect of this coupling can not be neglected any more. This is the reason of the

mismatch between analytical and simulation results for large S .

Note that in Eq. 6.14 the first term dominates in the limit of small S and unlike in the

single filament case, when p0 ' (1−W0/U0) ' 1/2 in that limit, the contact probability for

the multiple filament case increases with F (see Eq. 6.9). Thus even for small S when barrier

dynamics can be almost ignored, the force-velocity curve is not a simple exponential (or

convex). In fact few simple algebraic steps from Eqs. 6.14 and 6.9 show that V(F) stays almost

constant for small F and decreases rapidly as F increases. In other words, the force-velocity

curve is concave. In other words, the difference in the behavior of the contact probability is

responsible for the difference with the single filament case.

For type B, since there is no bound filament polymerization, and only the last two terms

in Eq. 6.14 survive. We compare the analytical results with numerics which show good

agreement for small S . The contact probability p0 in this case shows a weaker dependence

on F and for a wide range of F, it remains close to 1/2 (see Fig. 6.6). Then the last term is a

constant and V(F) becomes almost exponential and hence convex. As S increases, p0 shows

stronger F-dependence, and the F-dependence of the last term cannot be ignored any more.

The curve thus deviates from exponential and actually becomes concave.

The stall force Fs for multiple filament case also show different behavior for type A and

B. For type A model, Fs decreases with S while for type B, it remains constant (see Fig.

6.7). Similar behavior was observed for the single filament case. From the expression of

V(F), we can calculate Fs analytically. For large F, where stalling happens, p0 is close to

(1−W0/U0) ' 1/2 for all values of S (see Eq. 6.9). Equating V(Fs) to zero gives, for type A

case

Fs =
1

βd

{
N ln

(U0

W0

)
+ ln

(
1 +

N(U0 −W0)

S

)}
(6.15)

which explicitly depends upon S .

For type B, the expression for Fs turns out to be,

Fs =
N
βd

ln
(U0

W0

)
(6.16)
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which is independent of S . We plot Fs as a function of S for both the cases and compare our

analytical results with numerics. Our analytical expression show good agreement. We also

note that the saturation value of Fs for type A is close to that for type B as S >> 1. Thus,

similar to the single filament case, in this case also, for S >> 1, both the models show the

same behaviour.
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Figure 6.7: Fs as a function of S for multiple filaments with rigid barrier. We note that for type A, Fs
decreases with S while for type B, Fs remains constant with S . Lines are analytical predi-
cations that matches well with the numerical data. We use N = 20 here. Other simulation
parameters are as in Table 2.1.

From Eqs. 6.15 and 6.16 we also see that the scaling of stall force on the number of filaments

is different for type A and B models. While for type B, stall force scales linearly with N, for

type A there is an additional logarithmic correction. Note that for a rigid barrier, there is

no shape fluctuation and the entire barrier moves as a whole. This means for type A model,

whenever a bound filament polymerizes, pushing the barrier up, all other bound filaments

immediately becomes free. Thus an effective interaction is induced among the filaments. For

type B model however, there is no bound filament polymerization and this effect is not there.

In this case the stall force increases proportionately as N is increased. An absence of linear

scaling between Fs and N has also been reported in earlier studies [19, 29] and was explained

by using effects like ATP hydrolysis of actin monomers. Here, we have shown similar effects

but from a different origin. We plot Fs/N as a function of N for different values of S and

compare with our analytical expressions in Fig. 6.8. The main plot is for type A while the

inset is for type B. We note that for type A, the curve for larger S is always below the

curve for smaller S , which is consistent with our earlier observation (Fig. 6.7) that stall force

decreases with S . For type B, on the other hand, all the curves fall on top of each other,

because in this case, Fs is independent of S . We also note that, in the limit S >> 1, curves

for type A and B become similar.
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Figure 6.8: Fs/N as a function of N for rigid barrier. Main plot is for type A and the inset is for type
B. For type A, The variation of Fs with N deviates from linearity and also depends on S .
For S >> 1, the deviation is smaller. For type B, Fs/N remains constant with N and the
variation is independent of S . Our analytical predictions matches well with the numerics.
Simulation parameters are as in Table 2.1.

6.3 kpz barrier model

In Chapter 2, we had studied KPZ-barrier with type A interaction. In this section, we will

study the comparison between type A and B interactions for the same model. In the earlier

case (Chapter 2), we allow the filaments to push the barrier locally (pushing against a valley)

as well as globally, while the independent fluctuations are restricted to be local movements

(hill-valley flipping) only. For type B interaction, the bound filament polymerization is absent

and since the independent fluctuations are only local, it will give rise to large differences in

the description of these two models. Thus, in order to ensure the other differences remains

minimal, in the present case, we ignore any global movement of the barrier for type A

interaction. Thus, for type A interaction, the dynamics shown in Fig. 2.1(a), 2.1(c) and 2.1(d)

are allowed while for type B interaction, only the dynamics 2.1(c) and 2.1(d) are allowed.

The simulation technique is same as described in Chapter 2. We only discuss the results

for single filament here. For multiple filaments also, we note the same qualitative behaviour

(data not shown).

We find that the barrier velocity is systematically higher for type A compared to type B

model, as expected. However, in this case the main qualitative difference between the two

models is observed only in the dependence of stall force Fs on S . In Fig. 6.9 we show that for

type A stall force decreases with S and for type B it stays constant. This is consistent with

the data shown in Fig. 6.4 for rigid barrier. For KPZ barrier, many other quantities like V0,

force-velocity curve, while quantitatively different for type A and B models, show similar

qualitative behavior. The reason can be explained in the following way. Although bound
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filament polymerization is allowed for type A model, this process happens only when there

is a valley present at the binding site. The probability for such an occurrence is low. Most

of the time the binding site sits on a local hill and when in contact with a filament, that

hill cannot even flip to a valley. Thus even though type A model allows bound filament

polymerization, most of the time this polymerization does not take place and the mechanism

then becomes effectively similar to type B.
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Figure 6.9: Fs as a function of S/L. We note that for type A, the stall force decreases with S/L. For
type B, the stall force remains constant with S/L over a wide range of S/L. For very large
S/L, Fs for both the cases saturates to the same value. Here we use L = 64, N = 1. Other
simulation parameters are as in Table 2.1.

6.4 elastic barrier model

In this section, we discuss the difference between type A and B dynamics for an elastic barrier

model which is studied in chapter 3 (Gradient Model). The dynamics and the simulation

techniques are same as described in chapter 3. For type A interactions, all the movements

shown in Fig. 3.1 are allowed while for type B interaction, the dynamics shown in Fig. 3.1(c)

is not allowed. We only present the results for single filament here and note that for multiple

filaments also, the qualitative nature of the results remain same.

6.4.1 Variation of V0 with S/L

For µ = 0, there is no energy cost for creating local protrusions or height gradient on the

membrane. Apart from the binding sites, all (L − 1) membrane sites undergo equilibrium

thermal fluctuations in this case and the time-averaged local velocity of the membrane is

zero at all these sites. Only the binding site feels the presence of the growing filament: for

type A interaction, the filament pushes at the binding site and gives it a non-zero velocity
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while for type B interaction, the filament blocks downward movement of the binding site

and thus imparts a velocity to the membrane. Following similar steps as done in the rigid

barrier case, it is easy to show that for type A model, V0 = d(U0 −W0)/L, which does not

depend on S , and for type B model V0 = d
L
(U0−W0)

1+ U0
(S/L)

, which has an explicit dependence on S .

This behaviour is same as the rigid barrier case with S replaced by S/L in this case. In Fig.

6.10 we show the comparison with simulation data.
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Figure 6.10: Velocity at µ = 0 as a function of S/L for elastic barrier. For type A, we note that the
velocity for µ = 0 remains constant with S/L. The value is V0 = d(U0 −W0)/L. For type
B, unlike type A, velocity increases with S/L and saturates to a value d(U0 −W0)/L,
same as the velocity for type A. We use L = 64 for both the cases. Other simulation
parameters are as in Table 2.1.

6.4.2 µ−V curves for different values of S/L

In Fig. 6.11 we plot µ − V curve for different values of S/L. The µ − V data for type A

interaction were also presented in Chapter 3. For both type A and B dynamics, the curve

shows a peak for S/L = 1 and becomes monotonic concave curve for S/L � 1. However,

as S/L becomes smaller than unity, the curve becomes convex for type A and for type B

the curve continues to show a peak and the peak position does not depend on S/L in this

regime. So the main qualitative difference in this case is obtained for small values of S/L

when the membrane dynamics is much slower than the filament dynamics. Since for very

large S , the difference between type A and B ceases to exist, we find concave µ− V curves

for both models in this limit.

In order to explain this difference, we measure the relative contribution of Vbind and Vbulk

towards the average membrane velocity. In Fig. 6.12 we plot Vbind
(L−1)Vbulk

at a fixed µ < µ∗ as a

function of S/L. When this ratio is close to 1, that means both binding site and bulk sites

have comparable contribution, but if the ratio is much larger than 1, bulk site contribution
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Figure 6.11: µ−V curve for different values of S/L for elastic barrier. We have scaled V by maximum
velocity Vmax to compare them in the same scale. (a) Type A: For S/L ∼ 1, the µ−V curve
is non-monotonic with a peak at µ = µ∗. As S/L increases, the peak shifts towards to
smaller value of µ and finally the curve becomes concave for S/L >> 1. For S/L << 1,
the curve is convex. (b) Type B: In this case, unlike the previous case, we do not have any
convex curve even for S/L << 1. For all the above plots, we have used L = 64. Note that
for S/L >> 1, both the cases show a concave µ−V curve. Other simulation parameters
are as in Table 2.1.

can be ignored. Our data show that for type A model, the ratio increases as S/L decreases,

meaning for small S/L binding site velocity dominates. Since, Vbind falls monotonically with

µ (Chapter 3), the average velocity also falls monotonically. For type B, on the other hand,

the ratio remains close to 1 even when S/L << 1 and due to non-monotonic variation of

Vbulk with µ the µ−V curve remains peaked in this case.
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Figure 6.12: Variation of Vbind
(L−1)Vbulk

with S/L for elastic barrier. For type A, we note that as S/L

decreases, the value of Vbind
(L−1)Vbulk

increases which means that the contribution of binding
site to the total velocity increases in comparison to the bulk sites. Thus, the nature of
µ − V curve changes to convex for S/L << 1. Here we use µ = 0.87pN which is less
than µ∗. For type B, as S/L decreases, the value of Vbind

(L−1)Vbulk
does not vary much. Thus,

even for S/L << 1, the terms Vbind and Vbulk remain comparable and the µ− V curve
remains non-monotonic. Here we use µ = 0.26pN. For both the models, we use L = 64.
Other simulation parameters are as in Table 2.1.
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6.4.3 Variation of µ∗ with S/L

In chapter 3, we have seen that µ∗ decreases with S/L for type A interaction, but for type

B, the variation of µ∗ as a function of S/L is different. We note that for type B, the peak

position in the elasticity-velocity curve remains fixed over a wide range of S/L . 1 (see

Fig. 6.13). In Sec. 3.3.3, we have calculated analytically the variation of µ∗ with S/L for type

A (see Eq. 3.6). The same behavior can also be explained by the force balance at the tip of

filament. Note that for the rigid barrier case discussed in Sec. 6.2.3, the balance between

polymerization force and externally applied force is reached at the point of stalling and we

can therefore use the expression for Fs calculated in Sec. 6.2.3 for the polymerization force

generated by the filaments, even in the case of an elastic barrier. The only modification in

this case is for type A model, where there is an explicit S dependence of Fs (see Eq. 6.5),

one must replace S by S/L because unlike a rigid barrier, the whole elastic barrier does not

move as a single unit and height fluctuations take place at each of L sites on the barrier. This

gives for type A

µ∗ = − 1
2βd

ln
[(

U0 −W0 + 2SL
2SL

)(
1−

√
1−

4U0W0(
S
L )

2

U2
0(U0 −W0 + 2SL )

2

)]
(6.17)

and for type B

µ∗ =
1

2βd
ln
(U0

W0

)
. (6.18)

Our data in Fig. 6.13 shows good agreement with this calculation. This plot shows that for

type A, as S/L is increased, µ∗ decreases and for type B it remains constant. The data for

type A appeared earlier in Chapter 3. Note that although the µ−V curve becomes monotonic

for type A model in the limit of small S/L, one still has a finite µ∗.

In this section, we have studied the comparison between type A and B interactions using

the gradient model for the barrier, which is studied in Chapter 3. In Chapter 4, where we

have studied the Gaussian model, the elastic energy of the barrier is proportional to square of

the local height gradient [26, 70]. In this case, we find only quantitative difference between

type A and B dynamics (data not shown here), and qualitative behavior remains mostly

similar.

6.5 conclusion

In summary, we have studied the force generation by a set of parallel actin filaments growing

against a barrier by considering two models for the filament-barrier interaction. In type A
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Figure 6.13: Variation of µ∗ with S/L for elastic barrier. For type A, µ∗ decreases continuously with
S/L. For type B, µ∗ remains constant for a wide range of S/L. Our analytical predictions
matches well with the numerical results. Simulation parameters are as in Table 2.1.

model, the filaments can push the barrier and grow, while in type B model, the filaments

can grow only when thermal fluctuations of the barrier position creates a space for growth.

It is clear from the definition of the two models that in identical conditions, the velocity of

the barrier in type A model cannot fall below that in type B model. We also find important

qualitative differences between the two model types. We demonstrate these differences for

three barrier dynamics: Rigid barrier, KPZ barrier and elastic barrier. In all three cases, we

find that the main differences between type A and B models are manifested in the way

various properties depend on the relative time-scale S between the filament and barrier

dynamics. In the limit of very large S , when the thermal fluctuations of barrier position

are much faster than filament (de)polymerization, we find type A and B models become

similar. In this case, since the contact probability p0 becomes negligible, the filaments grow

freely most of the time without pushing the barrier even for type A interaction. Thus, in this

limit, the two models yield same results. However, for small and moderate S values, we find

significant differences.

The competition between polymerization force of the filaments and the opposing force

exerted by the barrier shapes the underlying physics of the system. For a rigid barrier and

a KPZ barrier, this opposing force is described as an external force that tends to move the

barrier downward, while polymerization force coming from the filaments is pushing the

barrier upward. The point of balance between these two forces is achieved at stalling, when

the barrier velocity vanishes. For an elastic membrane, the competition between the two

forces plays out in a different way. In this case, the elastic force of the barrier tries to maintain

a flat shape of the membrane, while filament polymerization tends to create protrusions on

the membrane. The point of balance in this case is µ∗, when the binding site and bulk site

velocities become equal. We show that for all three barriers, the point of balance depends
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on S for type A model: The stall force Fs (for rigid and KPZ barrier) and µ∗ (for elastic

barrier) decreases with S and saturates to a constant value for large S . For type B models,

we find that Fs and µ∗ remains independent of S . In other words, when the bound filament

polymerization is not allowed, the polymerization force is insensitive to the time-scale of

thermal fluctuations, but when the bound filaments can actively push the barrier and grow,

the polymerization force decreases as the barrier dynamics becomes faster. On the contrary,

when there is no opposing force offered by the barrier, i.e. F = 0 or µ = 0, the two models

show opposite behavior. For type A models, in this limit there is no difference between free

and bound filament polymerization rate, and the barrier velocity V0 in this case does not

depend on S for rigid and elastic barrier. However, for type B models, since bound filaments

cannot polymerize, polymerization process still has to wait when thermal fluctuations create

a space for growth and hence V0 for type B models increases with S .

Our study shows that while modelling force generation of actin filaments, it is important

to consider what type of filament barrier interaction should be included in the model. The

seemingly minor details like whether bound filament polymerization is allowed or not, may

give rise to qualitatively different outcomes. Based on the results we have presented here, it is

also possible to perform experimental measurements to decide which type of model would

be suitable in a given situation. The relative time-scale between the barrier and filament

dynamics may be varied by controlling the free filament polymerization rate which depends

on the concentration of monomers in the medium. By directly measuring the variation of

quantities like stall force, or force-velocity curve as a function of this time-scale, it should be

possible to decide the suitability of a particular model type.

83



B I B L I O G R A P H Y

1J. Howard, Mechanics of motor proteins and the cytoskeleton (Sunderland, MA: Sinauer Asso-

ciates, 2001) (cit. on pp. 1, 17).

2T. D. Pollard and J. A. Cooper, “Actin, a central player in cell shape and movement,”

Science 326, 1208–1212 (2009), eprint: http://science.sciencemag.org/content/326/

5957/1208.full.pdf (cit. on p. 1).

3L. Blanchoin, R. Boujemaa-Paterski, C. Sykes, and J. Plastino, “Actin dynamics, architecture,

and mechanics in cell motility,” Physiological Reviews 94, PMID: 24382887, 235–263 (2014),

eprint: https://doi.org/10.1152/physrev.00018.2013 (cit. on p. 1).

4P. Friedl and D. Gilmour, “Collective cell migration in morphogenesis, regeneration and

cancer,” Nature Reviews Molecular Cell Biology 10, Review Article, 445 EP – (2009) (cit. on

p. 1).

5J. Plastino and C. Sykes, “The actin slingshot,” Current Opinion in Cell Biology 17, 62 –66

(2005) (cit. on p. 1).

6M. P. Taylor, O. O. Koyuncu, and L. W. Enquist, “Subversion of the actin cytoskeleton

during viral infection,” Nature Reviews Microbiology 9, Review Article, 427 EP – (2011)

(cit. on p. 3).

7Y. Marcy, J. Prost, M.-F. Carlier, and C. Sykes, “Forces generated during actin-based propul-

sion: a direct measurement by micromanipulation,” Proceedings of the National Academy

of Sciences 101, 5992–5997 (2004), eprint: http://www.pnas.org/content/101/16/5992.

full.pdf (cit. on pp. 3, 7, 29, 32).

8C. Brangbour, O. du Roure, E. Helfer, D. Démoulin, A. Mazurier, M. Fermigier, M.-F. Car-

lier, J. Bibette, and J. Baudry, “Force-velocity measurements of a few growing actin fila-

ments,” PLOS Biology 9, 1–7 (2011) (cit. on pp. 3, 29, 32).

9D. Démoulin, M.-F. Carlier, J. Bibette, and J. Baudry, “Power transduction of actin filaments

ratcheting in vitro against a load,” Proceedings of the National Academy of Sciences 111,

17845–17850 (2014), eprint: http://www.pnas.org/content/111/50/17845.full.pdf (cit.

on pp. 3, 4, 29, 32).

10S. H. Parekh, O. Chaudhuri, J. A. Theriot, and D. A. Fletcher, “Loading history determines

the velocity of actin-network growth,” Nature Cell Biology 7, 1219 EP – (2005) (cit. on pp. 3,

4, 29, 32).

84

http://dx.doi.org/10.1126/science.1175862
http://science.sciencemag.org/content/326/5957/1208.full.pdf
http://science.sciencemag.org/content/326/5957/1208.full.pdf
http://dx.doi.org/10.1152/physrev.00018.2013
https://doi.org/10.1152/physrev.00018.2013
http://dx.doi.org/10.1038/nrm2720
http://dx.doi.org/https://doi.org/10.1016/j.ceb.2004.12.001
http://dx.doi.org/https://doi.org/10.1016/j.ceb.2004.12.001
https://doi.org/10.1038/nrmicro2574
http://dx.doi.org/10.1073/pnas.0307704101
http://dx.doi.org/10.1073/pnas.0307704101
http://www.pnas.org/content/101/16/5992.full.pdf
http://www.pnas.org/content/101/16/5992.full.pdf
http://dx.doi.org/10.1371/journal.pbio.1000613
http://dx.doi.org/10.1073/pnas.1414184111
http://dx.doi.org/10.1073/pnas.1414184111
http://www.pnas.org/content/111/50/17845.full.pdf
http://dx.doi.org/10.1038/ncb1336


11M. Prass, K. Jacobson, A. Mogilner, and M. Radmacher, “Direct measurement of the lamel-

lipodial protrusive force in a migrating cell,” The Journal of Cell Biology 174, 767–772

(2006), eprint: http://jcb.rupress.org/content/174/6/767.full.pdf (cit. on pp. 3, 4, 7).

12F. Heinemann, H. Doschke, and M. Radmacher, “Keratocyte lamellipodial protrusion is

characterized by a concave force-velocity relation,” Biophysical Journal 100, 1420 –1427

(2011) (cit. on pp. 3, 4, 7).

13C. Peskin, G. Odell, and G. Oster, “Cellular motions and thermal fluctuations: the brownian

ratchet,” Biophysical Journal 65, 316 –324 (1993) (cit. on pp. 3–5, 7, 9, 28, 29, 32, 36, 66, 68).

14A. E. Carlsson, “Force-velocity relation for growing biopolymers,” Phys. Rev. E 62, 7082–

7091 (2000) (cit. on pp. 3–5, 28, 29).

15N. J. Burroughs and D Marenduzzo, “Growth of a semi-flexible polymer close to a fluctuat-

ing obstacle: application to cytoskeletal actin fibres and testing of ratchet models,” Journal

of Physics: Condensed Matter 18, S357 (2006) (cit. on pp. 3–5).

16T. E. Schaus and G. G. Borisy, “Performance of a population of independent filaments in

lamellipodial protrusion,” Biophysical Journal 95, 1393 –1411 (2008) (cit. on pp. 3–5).

17K. Tsekouras, D. Lacoste, K. Mallick, and J.-F. Joanny, “Condensation of actin filaments

pushing against a barrier,” New Journal of Physics 13, 103032 (2011) (cit. on pp. 3–5, 7, 9,

13, 21, 23, 29, 36, 66, 68).

18J. Krawczyk and J. Kierfeld, “Stall force of polymerizing microtubules and filament bun-

dles,” EPL (Europhysics Letters) 93, 28006 (2011) (cit. on pp. 3–7, 36, 66).

19D. Das, D. Das, and R. Padinhateeri, “Collective force generated by multiple biofilaments

can exceed the sum of forces due to individual ones,” New Journal of Physics 16, 063032

(2014) (cit. on pp. 3–5, 7, 9, 29, 36, 66, 68, 76).

20D. R. Kovar and T. D. Pollard, “Insertional assembly of actin filament barbed ends in asso-

ciation with formins produces piconewton forces,” Proceedings of the National Academy

of Sciences 101, 14725–14730 (2004), eprint: http://www.pnas.org/content/101/41/14725.

full.pdf (cit. on pp. 3, 6).

21M. J. Footer, J. W. J. Kerssemakers, J. A. Theriot, and M. Dogterom, “Direct measurement

of force generation by actin filament polymerization using an optical trap,” Proceedings of

the National Academy of Sciences 104, 2181–2186 (2007), eprint: http://www.pnas.org/

content/104/7/2181.full.pdf (cit. on pp. 3, 6).

22J. Zimmermann, C. Brunner, M. Enculescu, M. Goegler, A. Ehrlicher, J. Käs, and M. Falcke,

“Actin filament elasticity and retrograde flow shape the force-velocity relation of motile

cells,” Biophysical Journal 102, 287 –295 (2012) (cit. on p. 4).

85

http://dx.doi.org/10.1083/jcb.200601159
http://dx.doi.org/10.1083/jcb.200601159
http://jcb.rupress.org/content/174/6/767.full.pdf
http://dx.doi.org/https://doi.org/10.1016/j.bpj.2011.01.063
http://dx.doi.org/https://doi.org/10.1016/j.bpj.2011.01.063
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(93)81035-X
http://dx.doi.org/10.1103/PhysRevE.62.7082
http://dx.doi.org/10.1103/PhysRevE.62.7082
http://stacks.iop.org/0953-8984/18/i=14/a=S17
http://stacks.iop.org/0953-8984/18/i=14/a=S17
http://dx.doi.org/https://doi.org/10.1529/biophysj.107.125005
http://stacks.iop.org/1367-2630/13/i=10/a=103032
http://stacks.iop.org/0295-5075/93/i=2/a=28006
http://stacks.iop.org/1367-2630/16/i=6/a=063032
http://stacks.iop.org/1367-2630/16/i=6/a=063032
http://dx.doi.org/10.1073/pnas.0405902101
http://dx.doi.org/10.1073/pnas.0405902101
http://www.pnas.org/content/101/41/14725.full.pdf
http://www.pnas.org/content/101/41/14725.full.pdf
http://dx.doi.org/10.1073/pnas.0607052104
http://dx.doi.org/10.1073/pnas.0607052104
http://www.pnas.org/content/104/7/2181.full.pdf
http://www.pnas.org/content/104/7/2181.full.pdf
http://dx.doi.org/https://doi.org/10.1016/j.bpj.2011.12.023


23D. K. Hansda, S. Sen, and R. Padinhateeri, “Branching influences force-velocity curves and

length fluctuations in actin networks,” Phys. Rev. E 90, 062718 (2014) (cit. on pp. 4, 6, 9, 17,

29, 32, 36, 66, 68).

24E. Atilgan, D. Wirtz, and S. X. Sun, “Mechanics and dynamics of actin-driven thin mem-

brane protrusions,” Biophysical Journal 90, 65 –76 (2006) (cit. on pp. 4, 9, 30, 52, 53).

25S. L. Narasimhan and A. Baumgaertner, “Dynamics of a driven surface,” The Journal of

Chemical Physics 133, 034702 (2010), eprint: https://doi.org/10.1063/1.3447384 (cit. on

pp. 4, 9, 31, 44, 46, 66).

26A. Baumgaertner, “Crawling of a driven adherent membrane,” The Journal of Chemical

Physics 137, 144906 (2012), eprint: https://doi.org/10.1063/1.4757664 (cit. on pp. 4, 9,

31, 46, 81).

27L. Hu and G. A. Papoian, “Molecular transport modulates the adaptive response of branched

actin networks to an external force,” The Journal of Physical Chemistry B 117, PMID:

23962335, 13388–13396 (2013), eprint: https://doi.org/10.1021/jp405179e (cit. on pp. 4,

9, 53, 55).

28J. Weichsel and P. L. Geissler, “The more the tubular: dynamic bundling of actin filaments

for membrane tube formation,” PLOS Computational Biology 12, 1–13 (2016) (cit. on pp. 4,

9, 53).

29A. E. Carlsson, “Model of reduction of actin polymerization forces by atp hydrolysis,”

Physical Biology 5, 036002 (2008) (cit. on pp. 4, 7, 76).

30J. Zhu and A. Mogilner, “Mesoscopic model of actin-based propulsion,” PLOS Computa-

tional Biology 8, 1–12 (2012) (cit. on pp. 6, 29, 40).

31R. Wang and A. E. Carlsson, “Load sharing in the growth of bundled biopolymers,” New

Journal of Physics 16, 113047 (2014) (cit. on pp. 6, 9, 29, 32, 36, 40, 66, 68, 70).

32P. A. Giardini, D. A. Fletcher, and J. A. Theriot, “Compression forces generated by actin

comet tails on lipid vesicles,” Proceedings of the National Academy of Sciences 100, 6493–

6498 (2003), eprint: http://www.pnas.org/content/100/11/6493.full.pdf (cit. on p. 7).

33G. S. van Doorn, C. Tănase, B. M. Mulder, and M. Dogterom, “On the stall force for growing

microtubules,” European Biophysics Journal 29, 2–6 (2000) (cit. on p. 7).

34P. Sens and J. Plastino, “Membrane tension and cytoskeleton organization in cell motility,”

Journal of Physics: Condensed Matter 27, 273103 (2015) (cit. on pp. 8, 30).

35A. Diz-Muñoz, D. A. Fletcher, and O. D. Weiner, “Use the force: membrane tension as an

organizer of cell shape and motility,” Trends in Cell Biology 23, 47 –53 (2013) (cit. on pp. 8,

30).

86

http://dx.doi.org/10.1103/PhysRevE.90.062718
http://dx.doi.org/https://doi.org/10.1529/biophysj.105.071480
http://dx.doi.org/10.1063/1.3447384
http://dx.doi.org/10.1063/1.3447384
https://doi.org/10.1063/1.3447384
http://dx.doi.org/10.1063/1.4757664
http://dx.doi.org/10.1063/1.4757664
https://doi.org/10.1063/1.4757664
http://dx.doi.org/10.1021/jp405179e
http://dx.doi.org/10.1021/jp405179e
https://doi.org/10.1021/jp405179e
http://dx.doi.org/10.1371/journal.pcbi.1004982
http://stacks.iop.org/1478-3975/5/i=3/a=036002
http://dx.doi.org/10.1371/journal.pcbi.1002764
http://dx.doi.org/10.1371/journal.pcbi.1002764
http://stacks.iop.org/1367-2630/16/i=11/a=113047
http://stacks.iop.org/1367-2630/16/i=11/a=113047
http://dx.doi.org/10.1073/pnas.1031670100
http://dx.doi.org/10.1073/pnas.1031670100
http://www.pnas.org/content/100/11/6493.full.pdf
http://dx.doi.org/10.1007/s002490050245
http://stacks.iop.org/0953-8984/27/i=27/a=273103
http://dx.doi.org/https://doi.org/10.1016/j.tcb.2012.09.006


36J. Lemière, F. Valentino, C. Campillo, and C. Sykes, “How cellular membrane properties

are affected by the actin cytoskeleton,” Biochimie 130, Lipidomics and Functional Lipid

Biology, 33 –40 (2016) (cit. on pp. 8, 30).

37K. Keren, “Cell motility: the integrating role of the plasma membrane,” European Bio-

physics Journal 40, 1013 (2011) (cit. on pp. 8, 30).

38N. C. Gauthier, M. A. Fardin, P. Roca-Cusachs, and M. P. Sheetz, “Temporary increase in

plasma membrane tension coordinates the activation of exocytosis and contraction during

cell spreading,” Proceedings of the National Academy of Sciences 108, 14467–14472 (2011),

eprint: http://www.pnas.org/content/108/35/14467.full.pdf (cit. on p. 8).

39D. Raucher and M. P. Sheetz, “Cell spreading and lamellipodial extension rate is regulated

by membrane tension,” The Journal of Cell Biology 148, 127–136 (2000), eprint: http://

jcb.rupress.org/content/148/1/127.full.pdf (cit. on pp. 8, 30, 65).

40E. L. Batchelder, G. Hollopeter, C. Campillo, X. Mezanges, E. M. Jorgensen, P. Nassoy, P.

Sens, and J. Plastino, “Membrane tension regulates motility by controlling lamellipodium

organization,” Proceedings of the National Academy of Sciences 108, 11429–11434 (2011),

eprint: http://www.pnas.org/content/108/28/11429.full.pdf (cit. on pp. 8, 65).

41A. P. Liu, D. L. Richmond, L. Maibaum, S. Pronk, P. L. Geissler, and D. A. Fletcher,

“Membrane-induced bundling of actin filaments,” Nature Physics 4, 789 EP – (2008) (cit. on

pp. 8, 65).

42R. Dimova, “Recent developments in the field of bending rigidity measurements on mem-

branes,” Advances in Colloid and Interface Science 208, Special issue in honour of Wolf-

gang Helfrich, 225 –234 (2014) (cit. on pp. 8, 53, 65).

43J. R. Henriksen, T. L. Andresen, L. N. Feldborg, L. Duelund, and J. H. Ipsen, “Under-

standing detergent effects on lipid membranes: a model study of lysolipids,” Biophys J 98,

20483328[pmid], 2199–2205 (2010) (cit. on pp. 8, 53, 65).

44H. Bouvrais, L. Duelund, and J. H. Ipsen, “Buffers affect the bending rigidity of model

lipid membranes,” Langmuir 30, PMID: 24377876, 13–16 (2014), eprint: https://doi.org/

10.1021/la403565f (cit. on pp. 8, 53, 65).

45J. Henriksen, A. C. Rowat, and J. H. Ipsen, “Vesicle fluctuation analysis of the effects of

sterols on membrane bending rigidity,” European Biophysics Journal 33, 732–741 (2004)

(cit. on pp. 8, 53, 65).

46G. Niggemann, M. Kummrow, and W. Helfrich, “The bending rigidity of phosphatidyl-

choline bilayers: dependences on experimental method, sample cell sealing and tempera-

ture,” J. Phys. II France 5, 413–425 (1995) (cit. on pp. 8, 53, 65).

87

http://dx.doi.org/https://doi.org/10.1016/j.biochi.2016.09.019
http://dx.doi.org/https://doi.org/10.1016/j.biochi.2016.09.019
http://dx.doi.org/10.1007/s00249-011-0741-0
http://dx.doi.org/10.1007/s00249-011-0741-0
http://dx.doi.org/10.1073/pnas.1105845108
http://www.pnas.org/content/108/35/14467.full.pdf
http://dx.doi.org/10.1083/jcb.148.1.127
http://jcb.rupress.org/content/148/1/127.full.pdf
http://jcb.rupress.org/content/148/1/127.full.pdf
http://dx.doi.org/10.1073/pnas.1010481108
http://www.pnas.org/content/108/28/11429.full.pdf
http://dx.doi.org/10.1038/nphys1071
http://dx.doi.org/https://doi.org/10.1016/j.cis.2014.03.003
http://dx.doi.org/https://doi.org/10.1016/j.cis.2014.03.003
http://dx.doi.org/10.1016/j.bpj.2010.01.037
http://dx.doi.org/10.1016/j.bpj.2010.01.037
http://dx.doi.org/10.1021/la403565f
https://doi.org/10.1021/la403565f
https://doi.org/10.1021/la403565f
http://dx.doi.org/10.1007/s00249-004-0420-5
http://dx.doi.org/10.1051/jp2:1995141


47W. Helfrich, “Elastic properties of lipid bilayers: theory and possible experiments.,” Z.

Naturforsch C28, 693 –703 (1973) (cit. on pp. 9, 53).

48A. Perilli, C. Pierleoni, G. Ciccotti, and J.-P. Ryckaert, “On the force-velocity relationship

of a bundle of rigid bio-filaments,” The Journal of Chemical Physics 148, 095101 (2018),

eprint: https://doi.org/10.1063/1.5001124 (cit. on pp. 9, 66, 68).

49J. Valiyakath and M. Gopalakrishnan, “Polymerisation force of a rigid filament bundle:

diffusive interaction leads to sublinear force-number scaling,” Scientific Reports 8, 2526

(2018) (cit. on pp. 9, 66, 68).

50M. Kardar, G. Parisi, and Y.-C. Zhang, “Dynamic scaling of growing interfaces,” Phys. Rev.

Lett. 56, 889–892 (1986) (cit. on p. 13).

51T. Sasamoto and H. Spohn, “The 1 + 1-dimensional kardar-parisi-zhang equation and its

universality class,” Journal of Statistical Mechanics: Theory and Experiment 2010, P11013

(2010) (cit. on p. 13).

52T. Sasamoto, “The 1d kardar-parisi-zhang equation: height distribution and universality,”

Progress of Theoretical and Experimental Physics 2016, 022A01 (2016), eprint: /oup/backfile/

content_public/journal/ptep/2016/2/10.1093_ptep_ptw002/3/ptw002.pdf (cit. on

p. 13).

53P. Nath, P. K. Mandal, and D. Jana, “Kardar-parisi-zhang universality class of a discrete ero-

sion model,” International Journal of Modern Physics C 26, 1550049 (2015), eprint: https:

//doi.org/10.1142/S0129183115500497 (cit. on p. 13).

54P. Gonçalves and M. Jara, “The einstein relation for the kpz equation,” Journal of Statistical

Physics 158, 1262–1270 (2015) (cit. on p. 13).

55J. Quastel and H. Spohn, “The one-dimensional kpz equation and its universality class,”

Journal of Statistical Physics 160, 965–984 (2015) (cit. on p. 13).

56M. Gubinelli and N. Perkowski, “Kpz reloaded,” Communications in Mathematical Physics

349, 165–269 (2017) (cit. on p. 13).

57T. Song and H. Xia, “Long-range temporal correlations in the kardar-parisi-zhang growth:

numerical simulations,” Journal of Statistical Mechanics: Theory and Experiment 2016,

113206 (2016) (cit. on p. 13).

58W. S. Alves, E. A. Rodrigues, H. A. Fernandes, B. A. Mello, F. A. Oliveira, and I. V. L. Costa,

“Analysis of etching at a solid-solid interface,” Phys. Rev. E 94, 042119 (2016) (cit. on p. 13).

59P. Dolai, A. Basu, and A. Simha, “Universal spatiotemporal scaling of distortions in a

drifting lattice,” Phys. Rev. E 95, 052115 (2017) (cit. on p. 13).

60H. Xia, G. Tang, and Y. Lan, “Numerical analysis of long-range spatial correlations in

surface growth,” Phys. Rev. E 94, 062121 (2016) (cit. on p. 13).

88

http://dx.doi.org/10.1063/1.5001124
https://doi.org/10.1063/1.5001124
http://dx.doi.org/10.1038/s41598-018-20259-7
http://dx.doi.org/10.1038/s41598-018-20259-7
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://stacks.iop.org/1742-5468/2010/i=11/a=P11013
http://stacks.iop.org/1742-5468/2010/i=11/a=P11013
http://dx.doi.org/10.1093/ptep/ptw002
/oup/backfile/content_public/journal/ptep/2016/2/10.1093_ptep_ptw002/3/ptw002.pdf
/oup/backfile/content_public/journal/ptep/2016/2/10.1093_ptep_ptw002/3/ptw002.pdf
http://dx.doi.org/10.1142/S0129183115500497
https://doi.org/10.1142/S0129183115500497
https://doi.org/10.1142/S0129183115500497
http://dx.doi.org/10.1007/s10955-014-1158-9
http://dx.doi.org/10.1007/s10955-014-1158-9
http://dx.doi.org/10.1007/s10955-015-1250-9
http://dx.doi.org/10.1007/s00220-016-2788-3
http://dx.doi.org/10.1007/s00220-016-2788-3
http://stacks.iop.org/1742-5468/2016/i=11/a=113206
http://stacks.iop.org/1742-5468/2016/i=11/a=113206
http://dx.doi.org/10.1103/PhysRevE.94.042119
http://dx.doi.org/10.1103/PhysRevE.95.052115
http://dx.doi.org/10.1103/PhysRevE.94.062121


61M. Hoshino, “Kpz equation with fractional derivatives of white noise,” Stochastics and

Partial Differential Equations: Analysis and Computations 4, 827–890 (2016) (cit. on p. 13).

62R. K. Sadhu and S. Chatterjee, “Actin filaments growing against a barrier with fluctuating

shape,” Phys. Rev. E 93, 062414 (2016) (cit. on pp. 14, 32, 35, 40).

63S. F. Edwards and D. R. Wilkinson, “The surface statistics of a granular aggregate,” Pro-

ceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 381,

17–31 (1982) (cit. on p. 16).

64T. D. Pollard, “Rate constants for the reactions of atp- and adp-actin with the ends of actin

filaments.,” The Journal of Cell Biology 103, 2747–2754 (1986), eprint: http://jcb.rupress.

org/content/103/6/2747.full.pdf (cit. on p. 17).

65A. Mogilner and G. Oster, “Cell motility driven by actin polymerization,” Biophysical

Journal 71, 3030 –3045 (1996) (cit. on pp. 28, 66).

66A. Mogilner and G. Oster, “The physics of lamellipodial protrusion,” European Biophysics

Journal 25, 47–53 (1996) (cit. on p. 28).

67D. Das, D. Das, and R. Padinhateeri, “Force-induced dynamical properties of multiple

cytoskeletal filaments are distinct from that of single filaments,” PLOS ONE 9, 1–21 (2014)

(cit. on p. 29).

68A. Mogilner and G. Oster, “The polymerization ratchet model explains the force-velocity

relation for growing microtubules,” European Biophysics Journal 28, 235–242 (1999) (cit. on

p. 29).

69A. Mogilner and G. Oster, “Force generation by actin polymerization ii: the elastic ratchet

and tethered filaments,” Biophysical Journal 84, 1591 –1605 (2003) (cit. on p. 29).

70R. K. Sadhu and S. Chatterjee, “Actin filaments growing against an elastic membrane: effect

of membrane tension,” Phys. Rev. E 97, 032408 (2018) (cit. on pp. 31, 46, 59, 69, 81).

71Statistical mechanics of membranes and surfaces (World Scientific, 2004) (cit. on p. 31).

72R. Lipowsky and S. Grotehans, “Renormalization of hydration forces by collective protru-

sion modes,” Biophysical Chemistry 49, 27 –37 (1994) (cit. on pp. 31, 44, 46).

73A. Volmer, U. Seifert, and R. Lipowsky, “Critical behavior of interacting surfaces with

tension,” The European Physical Journal B - Condensed Matter and Complex Systems 5,

811–823 (1998) (cit. on pp. 31, 44, 46).

74R. Lipowsky and S. Grotehans, “Hydration vs. protrusion forces between lipid bilayers,”

EPL (Europhysics Letters) 23, 599 (1993) (cit. on pp. 31, 44, 46).

75B. Fogelson and A. Mogilner, “Computational estimates of membrane flow and tension

gradient in motile cells,” PLOS ONE 9, 1–12 (2014) (cit. on p. 45).

89

http://dx.doi.org/10.1007/s40072-016-0078-x
http://dx.doi.org/10.1007/s40072-016-0078-x
http://dx.doi.org/10.1103/PhysRevE.93.062414
http://www.jstor.org/stable/2397363
http://www.jstor.org/stable/2397363
http://www.jstor.org/stable/2397363
http://dx.doi.org/10.1083/jcb.103.6.2747
http://jcb.rupress.org/content/103/6/2747.full.pdf
http://jcb.rupress.org/content/103/6/2747.full.pdf
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(96)79496-1
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(96)79496-1
http://dx.doi.org/10.1007/s002490050016
http://dx.doi.org/10.1007/s002490050016
http://dx.doi.org/10.1371/journal.pone.0114014
http://dx.doi.org/10.1007/s002490050204
http://dx.doi.org/https://doi.org/10.1016/S0006-3495(03)74969-8
http://dx.doi.org/10.1103/PhysRevE.97.032408
http://dx.doi.org/https://doi.org/10.1016/0301-4622(93)E0079-K
http://dx.doi.org/10.1007/s100510050507
http://dx.doi.org/10.1007/s100510050507
http://stacks.iop.org/0295-5075/23/i=8/a=010
http://dx.doi.org/10.1371/journal.pone.0084524


76Y. Schweitzer, A. Lieber, K. Keren, and M. Kozlov, “Theoretical analysis of membrane

tension in moving cells,” Biophysical Journal 106, 84 –92 (2014) (cit. on p. 45).

77X. Li and A. B. Kolomeisky, “The role of multifilament structures and lateral interactions

in dynamics of cytoskeleton proteins and assemblies,” The Journal of Physical Chemistry

B 119, 4653–4661 (2015) (cit. on p. 66).

78R. K. Sadhu and S. Chatterjee, “Actin filaments pushing against a barrier: comparison

between two force generation mechanisms,” Eur. Phys. J. E, (In press) (2019) (cit. on p. 67).

90

http://dx.doi.org/https://doi.org/10.1016/j.bpj.2013.11.009
http://dx.doi.org/10.1021/acs.jpcb.5b01219
http://dx.doi.org/10.1021/acs.jpcb.5b01219

	Dedication
	Acknowledgements
	Publications
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Force generation by actin filaments
	1.2 Experimental measurements of force-velocity curves
	1.3 Theoretical studies of force-velocity curves
	1.4 measurement of stall force
	1.5 Importance of membrane properties on the force generation mechanism by actin filaments
	1.6 Motivation and plan of the thesis

	2 Actin filaments growing against a Kardar-Parisi-Zhang (KPZ) membrane
	2.1 Introduction
	2.2 Description of the model
	2.3 Results for single filament
	2.3.1 Analytical calculation of velocity due to global movement
	2.3.2 Analytical calculation of velocity due to local fluctuations
	2.3.3 Variation of the shape of the barrier with load
	2.3.4 Effect of faster and slower barrier dynamics
	2.3.5 Results for < d

	2.4 Results for multiple filaments
	2.5 Summary

	3 Actin filaments growing against an elastic membrane: Gradient model
	3.1 Introduction
	3.2 Description of the model
	3.3 Results for single filament
	3.3.1 Peak in the elasticity-velocity curve
	3.3.2 Absence of steady state for < 
	3.3.3 Faster membrane dynamics lowers *
	3.3.4 For large  the membrane behaves as a rigid obstacle

	3.4 Results for multiple filaments
	3.5 Conclusions

	4 Actin filaments growing against an elastic membrane: Gaussian Model
	4.1 Introduction
	4.2 Description of the model
	4.3 Results for single filament
	4.3.1 Membrane velocity decreases with 
	4.3.2 Faster membrane dynamics yields a concave -V curve

	4.4 Results for Multiple filaments
	4.5 Conclusions

	5 Membrane with elastic and bending energy: Helfrich Hamiltonian model
	5.1 Introduction
	5.2 Description of the model
	5.3 Results for single filament
	5.3.1 Non-monotonic variation in bending energy cost
	5.3.2 Membrane velocity varies non-monotonically with 
	5.3.3 Faster membrane dynamics lowers *
	5.3.4 -V curves are monotonic for any 

	5.4 Results for multiple filaments
	5.4.1 For N L, the qualitative behaviour remains same as the single filament
	5.4.2 For N L, * depends explicitly upon N and L

	5.5 Conclusions

	6 Comparison between two types of filament-barrier interactions
	6.1 Introduction
	6.2 Rigid barrier model
	6.2.1 Variation of V0 with S for single filament
	6.2.2 Force-velocity curves with different S for single filament
	6.2.3 Stall force as a function of S for single filament
	6.2.4 Results for multiple filaments

	6.3 KPZ barrier model
	6.4 Elastic barrier model
	6.4.1 Variation of V0 with S/L
	6.4.2 -V curves for different values of S/L
	6.4.3 Variation of * with S/L

	6.5 Conclusion


